A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data

被引:77
作者
Xu, Jing [1 ,2 ]
Wu, Peng [1 ,2 ]
Chen, Yuehui [1 ,2 ]
Meng, Qingfang [1 ,2 ]
Dawood, Hussain [3 ]
Dawood, Hassan [4 ]
机构
[1] Univ Jinan, Sch Informat Sci & Engn, Jinan, Shandong, Peoples R China
[2] Shandong Prov Key Lab Network Based Intelligent C, Jinan, Shandong, Peoples R China
[3] Univ Jeddah, Dept Comp & Network Engn, Jeddah, Saudi Arabia
[4] Univ Engn & Technol, Dept Software Engn, Taxila, Pakistan
基金
中国国家自然科学基金;
关键词
Autoencoder; Cancer subtype classification; Cascade forest; Data integration; Deep learning; GENOMIC DATA; BREAST; HETEROGENEITY; PREDICTION; ENSEMBLE; MICRORNA; NETWORK;
D O I
10.1186/s12859-019-3116-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Cancer subtype classification attains the great importance for accurate diagnosis and personalized treatment of cancer. Latest developments in high-throughput sequencing technologies have rapidly produced multi-omics data of the same cancer sample. Many computational methods have been proposed to classify cancer subtypes, however most of them generate the model by only employing gene expression data. It has been shown that integration of multi-omics data contributes to cancer subtype classification. Results: A new hierarchical integration deep flexible neural forest framework is proposed to integrate multi-omics data for cancer subtype classification named as HI-DFNForest. Stacked autoencoder (SAE) is used to learn high-level representations in each omics data, then the complex representations are learned by integrating all learned representations into a layer of autoencoder. Final learned data representations (from the stacked autoencoder) are used to classify patients into different cancer subtypes using deep flexible neural forest (DFNForest) model.Cancer subtype classification is verified on BRCA, GBM and OV data sets from TCGA by integrating gene expression, miRNA expression and DNA methylation data. These results demonstrated that integrating multiple omics data improves the accuracy of cancer subtype classification than only using gene expression data and the proposed framework has achieved better performance compared with other conventional methods. Conclusion: The new hierarchical integration deep flexible neural forest framework(HI-DFNForest) is an effective method to integrate multi-omics data to classify cancer subtypes.
引用
收藏
页数:11
相关论文
共 51 条
[1]   A pan-cancer proteomic analysis of The Cancer Genome Atlas (TCGA) project [J].
Akbani, Rehan ;
Ng, Kwok-Shing ;
Werner, Henrica M. ;
Zhang, Fan ;
Ju, Zhenlin ;
Liu, Wenbin ;
Yang, Ji-Yeon ;
Lu, Yiling ;
Weinstein, John N. ;
Mills, Gordon B. .
CANCER RESEARCH, 2014, 74 (19)
[2]  
[Anonymous], 2011, LECT NOTES STANFORD
[3]   Pupylation sites prediction with ensemble classification model [J].
Bao, Wenzheng ;
Huang, Zhenhua ;
Yuan, Chang-An ;
Huang, De-Shuang .
INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 18 (02) :91-104
[4]   DNA methylation epigenotypes in breast cancer molecular subtypes [J].
Bediaga, Naiara G. ;
Acha-Sagredo, Amelia ;
Guerra, Isabel ;
Viguri, Amparo ;
Albaina, Carmen ;
Ruiz Diaz, Irune ;
Rezola, Ricardo ;
Jesus Alberdi, Maria ;
Dopazo, Joaquin ;
Montaner, David ;
de Renobales, Mertxe ;
Fernandez, Agustin F. ;
Field, John K. ;
Fraga, Mario F. ;
Liloglou, Triantafillos ;
de Pancorbo, Marian M. .
BREAST CANCER RESEARCH, 2010, 12 (05)
[5]   MicroRNA signatures highlight new breast cancer subtypes [J].
Bhattacharyya, Malay ;
Nath, Joyshree ;
Bandyopadhyay, Sanghamitra .
GENE, 2015, 556 (02) :192-198
[6]   Colorectal Cancer Classification and Cell Heterogeneity: A Systems Oncology Approach [J].
Blanco-Calvo, Moises ;
Concha, Angel ;
Figueroa, Angelica ;
Garrido, Federico ;
Valladares-Ayerbes, Manuel .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (06) :13610-13632
[7]   MicroRNA-mRNA interactions underlying colorectal cancer molecular subtypes [J].
Cantini, Laura ;
Isella, Claudio ;
Petti, Consalvo ;
Picco, Gabriele ;
Chiola, Simone ;
Ficarra, Elisa ;
Caselle, Michele ;
Medico, Enzo .
NATURE COMMUNICATIONS, 2015, 6
[8]   Time-series forecasting using flexible neural tree model [J].
Chen, YH ;
Yang, B ;
Dong, JW ;
Abraham, A .
INFORMATION SCIENCES, 2005, 174 (3-4) :219-235
[9]   Flexible neural trees ensemble for stock index modeling [J].
Chen, Yuehui ;
Yang, Bo ;
Abraham, Ajith .
NEUROCOMPUTING, 2007, 70 (4-6) :697-703
[10]   Regulation of phosphate homeostasis by microRNA in Arabidopsis [J].
Chiou, TJ ;
Aung, K ;
Lin, SI ;
Wu, CC ;
Chiang, SF ;
Su, CL .
PLANT CELL, 2006, 18 (02) :412-421