Strong Equality Between the 2-Rainbow Domination and Independent 2-Rainbow Domination Numbers in Trees

被引:6
作者
Amjadi, J. [1 ]
Falahat, M. [1 ]
Sheikholeslami, S. M. [1 ]
Rad, N. Jafari [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Shahrood Univ Technol, Dept Math, Shahrood, Iran
关键词
2-Rainbow domination number; Independent 2-rainbow domination number; Strong equality; Tree; RAINBOW DOMINATION; GRAPHS;
D O I
10.1007/s40840-015-0284-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 2-rainbow dominating function (2RDF) on a graph G = (V, E) is a function f from the vertex set V to the set of all subsets of the set {1,2} such that for any vertex v is an element of V with f(v) = empty set the condition U-u is an element of N(v) f(u) ={1, 2} is fulfilled. A 2RDF f is independent (I2RDF) if no two vertices assigned nonempty sets are adjacent. The weight of a 2RDF f is the value omega(f) = Sigma v is an element of V vertical bar f(v)vertical bar. The 2-rainbow domination number gamma(r2)(G) (respectively, the independent 2-rainbow domination number i(r2)(G)) is the minimum weight of a 2RDF (respectively, I2RDF) on G. We say that gamma(r2)(G) is strongly equal to i(r2)(G) and denote by gamma(r2)(G) = i(r2)(G), if every 2RDF on G of minimum weight is an I2RDF. In this paper, we provide a constructive characterization of trees T with gamma(r2)(T) equivalent to i(r2)(T).
引用
收藏
页码:S205 / S218
页数:14
相关论文
共 16 条
  • [1] [Anonymous], 2000, INTRO GRAPH THEORY
  • [2] Aram H, 2013, B MALAYS MATH SCI SO, V36, P143
  • [3] Aram H, 2013, B MALAYS MATH SCI SO, V36, P39
  • [4] Bresar B, 2008, TAIWAN J MATH, V12, P213
  • [5] On the 2-rainbow domination in graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2394 - 2400
  • [6] Dehgardi N, 2015, MAT VESTN, V67, P102
  • [7] The k-rainbow bondage number of a graph
    Dehgardi, N.
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 174 : 133 - 139
  • [8] New Bounds on the Rainbow Domination Subdivision Number
    Falahat, Mohyedin
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    [J]. FILOMAT, 2014, 28 (03) : 615 - 622
  • [9] Strong equality of domination parameters in trees
    Haynes, TW
    Henning, MA
    Slater, PJ
    [J]. DISCRETE MATHEMATICS, 2003, 260 (1-3) : 77 - 87
  • [10] Haynes TW, 1998, NETWORKS, V32, P199, DOI 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO