On subtrees of trees

被引:90
作者
Székely, LA [1 ]
Wang, H [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
center; centroid; subtree core; number of subtrees; Wiener index; multiple parsimony alignment with affine gap cost; caterpillar; binary tree; tree;
D O I
10.1016/j.aam.2004.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study that over a certain type of trees (e.g., all trees or all binary trees) with a given number of vertices, which trees minimize or maximize the total number of subtrees (or subtrees with at least one leaf). Trees minimizing the total number of subtrees (or subtrees with at least one leaf) usually maximize the Wiener index, and vice versa. In [L.A. Szekely, H. Wang, Binary trees with the largest number of subtrees, submitted for publication], we described the structure of binary trees maximizing the total number of subtrees, here we provide a formula for this maximum value. We extend here the results from [L.A. Szekely, H. Wang, Binary trees with the largest number of subtrees, submitted for publication] to binary trees maximizing the total number of subtrees with at least one leaf-this was first investigated by Knudsen [Lecture Notes in Bioinformatics, vol. 2812, Springer-Verlag, 2003, 433-446] to provide upper bound for the time complexity of his multiple parsimony alignment with affine gap cost using a phylogenetic tree. Also, we show that the techniques of [L.A. Szekely, H. Wang, Binary trees with the largest number of subtrees, submitted for publication] can be adapted to the minimization of Wiener index among binary trees, first solved in [M. Fischermann, A. Hoffmann, D. Rautenbach, L.A. Szekely, L. Volkmann, Discrete Appl. Math. 122 (1-3) (2002) 127-137] and [F. Jelen, E. Triesch, Discrete Appl. Math. 125 (2-3) (2003) 225-233]. Using the number of subtrees containing a particular vertex, we define the subtree core of the tree, a new concept analogous to, but different from the concepts of center and centroid. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:138 / 155
页数:18
相关论文
共 12 条
[1]  
Adam A., 1974, STUDIA SCI MATH HUNG, V9, P285
[2]  
Aho A.V., 1973, Fibonacci Quart., V11, P429
[3]  
ENTRINGER RC, 1976, CZECH MATH J, V26, P283
[4]   Wiener index versus maximum degree in trees [J].
Fischermann, M ;
Hoffmann, A ;
Rautenbach, D ;
Székely, L ;
Volkmann, L .
DISCRETE APPLIED MATHEMATICS, 2002, 122 (1-3) :127-137
[5]   Superdominance order and distance of trees with bounded maximum degree [J].
Jelen, F ;
Triesch, E .
DISCRETE APPLIED MATHEMATICS, 2003, 125 (2-3) :225-233
[6]  
Jordan C., 1869, Journal fur die Reine und Angewandte Mathematik, V70, P185, DOI [DOI 10.1515/CRLL.1869.70.185, 10.1515/crll.1869.70.]
[7]  
Knudsen B, 2003, LECT N BIOINFORMAT, V2812, P433
[8]  
Lovasz L., 1993, COMBINATORIAL PROBLE
[9]  
SZEKELY LA, 2004, IND MATH I RES REPOR
[10]  
WANG H, 2005, THESIS U SO CAROLINA