Statistical physics-based model of mechanical degradation in lithium ion batteries

被引:24
作者
Tahmasbi, A. A. [1 ]
Eikerling, M. H. [1 ,2 ]
机构
[1] Simon Fraser Univ, Dept Chem, Burnaby, BC, Canada
[2] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Battery aging; porous electrode theory; morphological changes; population balance model; capacity fade; SINGLE-PARTICLE MODEL; STRESS GENERATION; NUMERICAL-SIMULATION; THEORETICAL-ANALYSIS; MATHEMATICAL-MODEL; AGING MECHANISMS; LIFE PREDICTION; CAPACITY FADE; ELECTROLYTE; DISSOLUTION;
D O I
10.1016/j.electacta.2018.06.119
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The article presents a statistical model of mechanical degradation in the negative electrode of lithium ion batteries. During battery operation, nano-cracks nucleate and grow caused by the impact of diffusion-induced stress during Li-ion intercalation. Particle agglomeration is another mechanical effect that contributes to morphological changes. The presented model employs a population balance formalism to describe the propagation of the particle density distribution function in the electrode. A set of kinetic and transport equations accounts for structure-transforming processes at the level of individual particles. These processes alter the particle density distribution function, and cause changes in battery performance. A parametric study reveals the population of small particles and the width of the initial particle size distribution (PSD) as the main parameters that determine changes in electrochemical performance and capacity fade. The model is applied to experimental data in order to isolate and quantify the impact of various degradation mechanisms. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 50 条
[21]   Determining the optimal discharge strategy for a lithium-ion battery using a physics-based model [J].
Lam, Leo L. ;
Darling, Robert B. .
JOURNAL OF POWER SOURCES, 2015, 276 :195-202
[22]   Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging [J].
Mueller, Simon ;
Pietsch, Patrick ;
Brandt, Ben-Elias ;
Baade, Paul ;
De Andrade, Vincent ;
De Carlo, Francesco ;
Wood, Vanessa .
NATURE COMMUNICATIONS, 2018, 9
[23]   A continuum of physics-based lithium-ion battery models reviewed [J].
Planella, F. Brosa ;
Ai, W. ;
Boyce, A. M. ;
Ghosh, A. ;
Korotkin, I ;
Sahu, S. ;
Sulzer, V ;
Timms, R. ;
Tranter, T. G. ;
Zyskin, M. ;
Cooper, S. J. ;
Edge, J. S. ;
Foster, J. M. ;
Marinescu, M. ;
Wu, B. ;
Richardson, G. .
PROGRESS IN ENERGY, 2022, 4 (04)
[24]   Life Degradation of Lithium-Ion Batteries Under Vehicle-to-Grid Operations Based on a Multi-physics Model [J].
Lee, Hyeon-Gyu ;
Choi, Jong-Won ;
Ryu, Seong-Taek ;
Lee, Kyu-Jin .
INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2025, 26 (02) :315-326
[25]   A coupled electrochemical-thermal-mechanical degradation modelling approach for lifetime assessment of lithium-ion batteries [J].
Yang, Shi-chun ;
Hua, Yang ;
Qiao, Dan ;
Lian, Yu-bo ;
Pan, Yu-wei ;
He, Yong-ling .
ELECTROCHIMICA ACTA, 2019, 326
[26]   A Novel Hybrid Physics-Based and Data-Driven Approach for Degradation Trajectory Prediction in Li-Ion Batteries [J].
Xu, Le ;
Deng, Zhongwei ;
Xie, Yi ;
Lin, Xianke ;
Hu, Xiaosong .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (02) :2628-2644
[27]   Comparison of Lithium-Ion Anode Materials Using an Experimentally Verified Physics-Based Electrochemical Model [J].
Fu, Rujian ;
Zhou, Xuan ;
Fan, Hengbin ;
Blaisdell, Douglas ;
Jagadale, Ajay ;
Zhang, Xi ;
Xiong, Rui .
ENERGIES, 2017, 10 (12)
[28]   Review and Performance Comparison of Mechanical-Chemical Degradation Models for Lithium-Ion Batteries [J].
Reniers, Jorn M. ;
Mulder, Grietus ;
Howey, David A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (14) :A3189-A3200
[29]   A Single Particle model with electrolyte and side reactions for degradation of lithium-ion batteries [J].
Planella, Ferran Brosa ;
Widanage, W. Dhammika .
APPLIED MATHEMATICAL MODELLING, 2023, 121 :586-610
[30]   Physics-based modelling and analysis of various ageing mechanisms in sodium-ion batteries [J].
Nilugal, Manjunath L. ;
Ramadesigan, Venkatasailanathan .
JOURNAL OF POWER SOURCES, 2025, 641