Temperature and wavelength dependence of nitrite photolysis in frozen and aqueous solutions

被引:83
作者
Chu, Liang [1 ]
Anastasio, Cort [1 ]
机构
[1] Univ Calif Davis, Atmosphere Sci Program, Dept Land Air & Water Resources, Davis, CA 95616 USA
关键词
D O I
10.1021/es062731q
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
While the photolysis of nitrite is an important source of hydroxyl radical (center dot OH) in some natural waters, its wavelength and temperature dependence have not been fully described in solution. In addition, there are no studies of this reaction on ice, although there is evidence of nitrite production in snow. To address these gaps, we have measured the wavelength and temperature dependence of the quantum yields of center dot OH from the photolysis of frozen and aqueous NO2-. From our solution and ice results, we derive a master equation that describes the center dot OH quantum yield from NO2- photolysis as a function of both temperature (240-295 K) and illumination wavelength (302-390 nm): Phi(NO2- -> OH center dot)(T,lambda) = (gamma(0) + a/(1 + exp((lambda - c)/b)))exp-(((e lambda + f)/R) x (1/295 - 1/T)) where gamma(0) = 0.0204 +/- 0.0010, a = 0.0506 +/- 0.0022, b = 11.2 +/- 1.2, c = 332 +/- 1, e = 20.5 +/- 3.2, f = 7553 +/- 1204, uncertainties represent 1 standard error, T is the temperature (K), R is the gas constant (8.314 J mol(-1) K-1), and lambda is the wavelength (nm). Using these results we predict the pseudo-steady-state concentrations of nitrite on sunlit polar snow grains and compare the relative importance of the photolysis of nitrite, nitrate, and hydrogen peroxide as sources of snow-grain center dot OH.
引用
收藏
页码:3626 / 3632
页数:7
相关论文
共 41 条
[1]   Impact of nitrous acid photolysis on the total hydroxyl radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in Milan [J].
Alicke, B ;
Platt, U ;
Stutz, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D22)
[2]   PHOTOCHEMISTRY AND ENVIRONMENT .14. PHOTOTRANSFORMATION OF NITROPHENOLS INDUCED BY EXCITATION OF NITRITE AND NITRATE IONS [J].
ALIF, A ;
BOULE, P .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1991, 59 (03) :357-367
[3]   AQUEOUS-PHASE PHOTOCHEMICAL FORMATION OF HYDROGEN-PEROXIDE IN AUTHENTIC CLOUD WATERS [J].
ANASTASIO, C ;
FAUST, BC ;
ALLEN, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1994, 99 (D4) :8231-8248
[4]   Photoformation of hydroxyl radical and hydrogen peroxide in aerosol particles from Alert, Nunavut: implications for aerosol and snowpack chemistry in the Arctic [J].
Anastasio, C ;
Jordan, AL .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (08) :1153-1166
[5]   Chemistry of fog waters in California's Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen [J].
Anastasio, C ;
McGregor, KG .
ATMOSPHERIC ENVIRONMENT, 2001, 35 (06) :1079-1089
[6]  
ANASTASIO C, 2007, IN PRESS ATMOS ENV
[7]   pH dependent photoformation of hydroxyl radical and absorbance of aqueous-phase N(III) (HNO2 and NO2-) [J].
Arakaki, T ;
Miyake, T ;
Hirakawa, T ;
Sakugawa, H .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (15) :2561-2565
[8]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[9]   Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice [J].
Chu, L ;
Anastasio, C .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (45) :9594-9602
[10]   Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide [J].
Chu, L ;
Anastasio, C .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (28) :6264-6271