Enhancing sensitivity in atomic force microscopy for planar tip-on-chip probes

被引:5
作者
Ciftci, H. Tunc [1 ]
Verhage, Michael [1 ]
Cromwijk, Tamar [1 ]
Van, Laurent Pham [2 ]
Koopmans, Bert [1 ]
Flipse, Kees [1 ]
Kurnosikov, Oleg [1 ,3 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Ctr CEA Saclay, DRF IRAMIS SPEC LEPO, F-91191 Gif Sur Yvette, France
[3] Lorraine Univ, Inst Jean Lamour, F-54000 Nancy, France
关键词
QUARTZ TUNING-FORK; DISTANCE CONTROL; SENSOR; RESOLUTION; SURFACE; CANTILEVERS; FABRICATION;
D O I
10.1038/s41378-022-00379-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a new approach to tuning-fork-based atomic force microscopy for utilizing advanced "tip-on-chip" probes with high sensitivity and broad compatibility. Usually, such chip-like probes with a size reaching 2 x 2 mm(2) drastically perturb the oscillation of the tuning fork, resulting in poor performance in its intrinsic force sensing. Therefore, restoring initial oscillatory characteristics is necessary for regaining high sensitivity. To this end, we developed a new approach consisting of three basic steps: tuning-fork rebalancing, revamping holder-sensor fixation, and electrode reconfiguration. Mass rebalancing allows the tuning fork to recover the frequency and regain high Q-factor values up to 10(4) in air and up to 4 x 10(4) in ultra-high vacuum conditions. The floating-like holder-fixation using soft wires significantly reduces energy dissipation from the mounting elements. Combined with the soft wires, reconfigured electrodes provide electrical access to the chip-like probe without intervening in the force-sensing signal. Finally, our easy-to-implement approach allows converting the atomic force microscopy tip from a passive tool to a dedicated microdevice with extended functionality.
引用
收藏
页数:11
相关论文
共 49 条
  • [1] FREQUENCY-MODULATION DETECTION USING HIGH-Q CANTILEVERS FOR ENHANCED FORCE MICROSCOPE SENSITIVITY
    ALBRECHT, TR
    GRUTTER, P
    HORNE, D
    RUGAR, D
    [J]. JOURNAL OF APPLIED PHYSICS, 1991, 69 (02) : 668 - 673
  • [2] Compensation of stray capacitance of the quartz tuning fork for a quantitative force spectroscopy
    An, Sangmin
    Lee, Kunyoung
    Kim, Bongsu
    Kim, Jongwoo
    Kwon, Soyoung
    Kim, Qhwan
    Lee, Manhee
    Jhe, Wonho
    [J]. CURRENT APPLIED PHYSICS, 2013, 13 (09) : 1899 - 1905
  • [3] A phase-locked shear-force microscope for distance regulation in near-field optical microscopy
    Atia, WA
    Davis, CC
    [J]. APPLIED PHYSICS LETTERS, 1997, 70 (04) : 405 - 407
  • [4] ATOMIC FORCE MICROSCOPE
    BINNIG, G
    QUATE, CF
    GERBER, C
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (09) : 930 - 933
  • [5] SURFACE STUDIES BY SCANNING TUNNELING MICROSCOPY
    BINNING, G
    ROHRER, H
    GERBER, C
    WEIBEL, E
    [J]. PHYSICAL REVIEW LETTERS, 1982, 49 (01) : 57 - 61
  • [6] Dynamics of quartz tuning fork force sensors used in scanning probe microscopy
    Castellanos-Gomez, A.
    Agrait, N.
    Rubio-Bollinger, G.
    [J]. NANOTECHNOLOGY, 2009, 20 (21)
  • [7] Polymer Patterning with Self-Heating Atomic Force Microscope Probes
    Ciftci, H. Tunc
    Van, Laurent Pham
    Koopmans, Bert
    Kurnosikov, Oleg
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (37) : 8036 - 8042
  • [8] Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis
    Dagdeviren, Omur E.
    Schwarz, Udo D.
    [J]. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2017, 8 : 657 - 666
  • [9] Coherent interaction with two-level fluctuators using near field scanning microwave microscopy
    de Graaf, S. E.
    Danilov, A. V.
    Kubatkin, S. E.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [10] Scanning Hall Probe Microscopy (SHPM) using quartz crystal AFM feedback
    Dede, M.
    Uerkmen, K.
    Girisen, Oe.
    Atabak, M.
    Oral, A.
    Farrer, I.
    Ritchie, D.
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2008, 8 (02) : 619 - 622