Data-Driven Wind Turbine Wake Decomposition and Evolution Analysis: A Frequency Characteristics-based Clustering Procedure

被引:0
作者
Chen, Zhenyu [1 ]
Lin, Zhongwei [1 ]
Liu, Jizhen [1 ]
Li, Gengda [2 ]
Hu, Feng [3 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China
[2] Guodian New Energy Technol Res Inst Co Ltd, Beijing 102209, Peoples R China
[3] CHN ENERGY Shandong New Energy Co Ltd, Jinan 250099, Peoples R China
来源
2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) | 2021年
基金
中国国家自然科学基金;
关键词
Data-Driven; Frequency Characteristic; Clustering; Decomposition; Dynamic Wake;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the research in wind turbine wake deepening, frequency characteristics are gaining more attention. Data-driven methods are usually adopted to analyze the wake performance. In this paper, a frequency characteristics-based clustering procedure is proposed to decompose the wind turbine wake into clusters, of which the wake frequency-domain performance and dynamic wake evolution process can be analyzed. The proposed procedure first calculates the frequency amplitudes of the measured velocity time-series on every measurement point in space, then decomposes the wake according to the amplitudes using a clustering algorithm. Take the centroid in each cluster as an example, dominant frequency characteristics are analyzed, which show the wake meandering frequency while help the understanding of the dynamic wake evolution.
引用
收藏
页码:5881 / 5886
页数:6
相关论文
共 23 条
[1]   Analysis of K-Means and K-Medoids Algorithm For Big Data [J].
Arora, Preeti ;
Deepali ;
Varshney, Shipra .
1ST INTERNATIONAL CONFERENCE ON INFORMATION SECURITY & PRIVACY 2015, 2016, 78 :507-512
[2]   Experimental and theoretical study of wind turbine wakes in yawed conditions [J].
Bastankhah, Majid ;
Porte-Agel, Fernando .
JOURNAL OF FLUID MECHANICS, 2016, 806 :506-541
[3]   POD Analysis of a Wind Turbine Wake in a Turbulent Atmospheric Boundary Layer [J].
Bastine, D. ;
Witha, B. ;
Waechter, M. ;
Peinke, J. .
SCIENCE OF MAKING TORQUE FROM WIND 2014 (TORQUE 2014), 2014, 524
[4]  
Chen Z., 2020, 2020 CHIN AUT C CAC
[5]   A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics [J].
Churchfield, Matthew J. ;
Lee, Sang ;
Michalakes, John ;
Moriarty, Patrick J. .
JOURNAL OF TURBULENCE, 2012, 13 (14) :1-32
[6]   Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes [J].
Debnath, M. ;
Santoni, C. ;
Leonardi, S. ;
Iungo, G. V. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2091)
[7]   A tutorial on the synthesis and validation of a closed-loop wind farm controller using a steady-state surrogate model [J].
Doekemeijer, Bart M. ;
Fleming, Paul A. ;
van Wingerden, Jan-Willem .
2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, :2825-2836
[8]   Investigation into the shape of a wake of a yawed full-scale turbine [J].
Fleming, Paul ;
Annoni, Jennifer ;
Martinez-Tossas, Luis A. ;
Raach, Steffen ;
Gruchalla, Kenny ;
Scholbrock, Andrew ;
Churchfield, Matthew ;
Roadman, Jason .
SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
[9]   Evaluating techniques for redirecting turbine wakes using SOWFA [J].
Fleming, Paul A. ;
Gebraad, Pieter M. O. ;
Lee, Sang ;
van Wingerden, Jan-Willem ;
Johnson, Kathryn ;
Churchfield, Matt ;
Michalakes, John ;
Spalart, Philippe ;
Moriarty, Patrick .
RENEWABLE ENERGY, 2014, 70 :211-218
[10]   Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study [J].
Gebraad, P. M. O. ;
Teeuwisse, F. W. ;
van Wingerden, J. W. ;
Fleming, P. A. ;
Ruben, S. D. ;
Marden, J. R. ;
Pao, L. Y. .
WIND ENERGY, 2016, 19 (01) :95-114