Grain size, stress, and creep in polycrystalline solids

被引:11
作者
Nabarro, FRM
机构
[1] Univ Witwatersrand, Condensed Matter Phys Res Unit, ZA-2050 Wits, South Africa
[2] CSIR, Div Mfg & Mat Technol, ZA-0001 Pretoria, South Africa
关键词
D O I
10.1134/1.1307052
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
If a stress sigma is applied to a polycrystal of grain size L, the mode of creep deformation depends on the answers to the following questions: (I) Does sigma exceed the Peierls stress sigma(p); (II) Does L exceed the dislocation spacing in a Taylor lattice stabilized by sigma(p); (III) Does Lo exceed the value required for a Frank-Read or Bardeen-Herring source to operate within the grain? (IV) Does L(1/2)sigma exceed the Hall-Fetch value required for slip to propagate across a grain boundary? The (L, sigma) plane is thus partitioned into regions in which different creep modes predominate. (C) 2000 MAIK "Nauka/Interperiodica".
引用
收藏
页码:1456 / 1459
页数:4
相关论文
共 17 条
[1]  
[Anonymous], T AM SOC MET
[2]   INTERFACE CONTROLLED DIFFUSIONAL CREEP [J].
ARZT, E ;
ASHBY, MF ;
VERRALL, RA .
ACTA METALLURGICA, 1983, 31 (12) :1977-1989
[3]   Overview no. 130 - Size effects in materials due to microstructural and dimensional constraints: A comparative review [J].
Arzt, E .
ACTA MATERIALIA, 1998, 46 (16) :5611-5626
[4]  
CADEK J, 1988, ELSEVIER MAT SCI MON, V48
[6]  
GIFKINS RC, 1973, J AUST I MET, V18, P137
[7]   POLYCRYSTALLINE STRENGTHENING [J].
HANSEN, N .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1985, 16 (12) :2167-2190
[8]   DIFFUSIONAL VISCOSITY OF A POLYCRYSTALLINE SOLID [J].
HERRING, C .
JOURNAL OF APPLIED PHYSICS, 1950, 21 (05) :437-445
[9]   ANALYSIS OF CREEP DATA ON ALUMINUM AT VERY LOW STRESSES [J].
MOHAMED, FA .
MATERIALS SCIENCE AND ENGINEERING, 1978, 32 (01) :37-40
[10]  
Nabarro F. R. N., 1948, C STRENGTH SOL PHYS