RLF-LPI: An ensemble learning framework using sequence information for predicting lncRNA-protein interaction based on AE-ResLSTM and fuzzy decision

被引:12
作者
Song, Jinmiao [1 ,2 ]
Tian, Shengwei [3 ,4 ,5 ]
Yu, Long [1 ]
Yang, Qimeng [1 ]
Dai, Qiguo [2 ]
Wang, Yuanxu [2 ]
Wu, Weidong [6 ]
Duan, Xiaodong [2 ]
机构
[1] Xinjiang Univ, Dept Informat Sci & Engn, Urumqi 830008, Peoples R China
[2] Dalian Minzu Univ, Key Lab Big Data Appl Technol, State Ethn Affairs Commiss, Dalian 116600, Peoples R China
[3] Xinjiang Univ, Dept Software, Urumqi 830008, Peoples R China
[4] Xinjiang Univ, Key Lab Signal & Informat Proc, Urumqi 830008, Peoples R China
[5] Xinjiang Univ, Key Lab Software Engn Technol, Urumqi 830008, Peoples R China
[6] Peoples Hosp Xinjiang Uygur Autonomous Reg, Ctr Sci Educ, Urumqi 830001, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; lncRNA-protein interaction; fuzzy decision; extra trees; attention mechanism; LONG NONCODING RNA; MODEL; HULC;
D O I
10.3934/mbe.2022222
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long non-coding RNAs (lncRNAs) play a regulatory role in many biological cells, and the recognition of lncRNA-protein interactions is helpful to reveal the functional mechanism of lncRNAs. Identification of lncRNA-protein interaction by biological techniques is costly and time-consuming. Here, an ensemble learning framework, RLF-LPI is proposed, to predict lncRNA-protein interactions. The RLF-LPI of the residual LSTM autoencoder module with fusion attention mechanism can extract the potential representation of features and capture the dependencies between sequences and structures by k-mer method. Finally, the relationship between lncRNA and protein is learned through the method of fuzzy decision. The experimental results show that the ACC of RLF-LPI is 0.912 on ATH948 dataset and 0.921 on ZEA22133 dataset. Thus, it is demonstrated that our proposed method performed better in predicting lncRNA-protein interaction than other methods.
引用
收藏
页码:4749 / 4764
页数:16
相关论文
共 37 条
[1]   Feature-Based and String-Based Models for Predicting RNA-Protein Interaction [J].
Adjeroh, Donald ;
Allaga, Maen ;
Tan, Jun ;
Lin, Jie ;
Jiang, Yue ;
Abbasi, Ahmed ;
Zhou, Xiaobo .
MOLECULES, 2018, 23 (03)
[2]  
Geourjon C, 1995, COMPUT APPL BIOSCI, V11, P681
[3]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P221
[4]   Switching cell fate, ncRNAs coming to play [J].
Guan, D. ;
Zhang, W. ;
Zhang, W. ;
Liu, G-H ;
Belmonte, J. C. Izpisua .
CELL DEATH & DISEASE, 2013, 4 :e464-e464
[5]  
Haoran Zhou, 2019, Intelligent Computing Methodologies. 15th International Conference, ICIC 2019. Proceedings: Lecture Notes in Artificial Intelligence (LNAI 11645), P358, DOI 10.1007/978-3-030-26766-7_33
[6]   HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy [J].
Hu, Huan ;
Zhang, Li ;
Ai, Haixin ;
Zhang, Hui ;
Fan, Yetian ;
Zhao, Qi ;
Liu, Hongsheng .
RNA BIOLOGY, 2018, 15 (06) :797-806
[7]   CD-HIT Suite: a web server for clustering and comparing biological sequences [J].
Huang, Ying ;
Niu, Beifang ;
Gao, Ying ;
Fu, Limin ;
Li, Weizhong .
BIOINFORMATICS, 2010, 26 (05) :680-682
[8]   PmliPred: a method based on hybrid model and fuzzy decision for plant miRNA-lncRNA interaction prediction [J].
Kang, Qiang ;
Meng, Jun ;
Cui, Jun ;
Luan, Yushi ;
Chen, Ming .
BIOINFORMATICS, 2020, 36 (10) :2986-2992
[9]   Globally ncRNAs Expression Profiling of TNBC and Screening of Functional lncRNA [J].
Kaushik, Aman Chandra ;
Mehmood, Aamir ;
Wang, Xiangeng ;
Wei, Dong-Qing ;
Dai, Xiaofeng .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 8
[10]   ViennaRNA Package 2.0 [J].
Lorenz, Ronny ;
Bernhart, Stephan H. ;
Siederdissen, Christian Hoener Zu ;
Tafer, Hakim ;
Flamm, Christoph ;
Stadler, Peter F. ;
Hofacker, Ivo L. .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2011, 6