Estimating curvatures and their derivatives on triangle meshes

被引:262
作者
Rusinkiewicz, S [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
来源
2ND INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION, PROCEEDINGS | 2004年
关键词
D O I
10.1109/TDPVT.2004.1335277
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The computation of curvature and other differential properties of surfaces is essential for many techniques in analysis and rendering. We present a finite-differences approach for estimating curvatures on irregular triangle meshes that may be thought of as an extension of a common method for estimating per-vertex normals. The technique is efficient in space and time, and results in significantly fewer outlier estimates while more broadly offering accuracy comparable to existing methods. It generalizes naturally to computing derivatives of curvature and higher-order surface differentials.
引用
收藏
页码:486 / 493
页数:8
相关论文
共 22 条
[1]  
ALLIEZ P, 2003, ACM T GRAPHICS, V22
[2]  
CAZALS F, 2003, P S GEOM PROC
[3]  
Chen X., 1992, P EUR C COMP VIS
[4]  
Cipolla R., 2000, VISUAL MOTION CURVES
[5]  
COHENSTEINER D, 2003, P S COMP GEOM
[6]  
DECARLO D, 2003, ACM T GRAPHICS, V22
[7]  
DECARLO D, 2004, P NPAR
[8]  
Desbrun M., 1999, P ACM SIGGRAPH
[9]  
GOLDFEATHER J, 2004, ACM T GRAPHICS, V23
[10]  
GRAVESEN J, 2002, ADV COMPUTATIONAL MA, V17