GP challenge: evolving energy function for protein structure prediction

被引:11
|
作者
Widera, Pawel [1 ]
Garibaldi, Jonathan M. [1 ]
Krasnogor, Natalio [1 ]
机构
[1] Univ Nottingham, Sch Comp Sci, Nottingham NG8 1BB, England
基金
英国工程与自然科学研究理事会;
关键词
Genetic programming; Protein structure prediction; Protein energy function; SIMILARITY;
D O I
10.1007/s10710-009-9087-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the key elements in protein structure prediction is the ability to distinguish between good and bad candidate structures. This distinction is made by estimation of the structure energy. The energy function used in the best state-of-the-art automatic predictors competing in the most recent CASP (Critical Assessment of Techniques for Protein Structure Prediction) experiment is defined as a weighted sum of a set of energy terms designed by experts. We hypothesised that combining these terms more freely will improve the prediction quality. To test this hypothesis, we designed a genetic programming algorithm to evolve the protein energy function. We compared the predictive power of the best evolved function and a linear combination of energy terms featuring weights optimised by the Nelder-Mead algorithm. The GP based optimisation outperformed the optimised linear function. We have made the data used in our experiments publicly available in order to encourage others to further investigate this challenging problem by using GP and other methods, and to attempt to improve on the results presented here.
引用
收藏
页码:61 / 88
页数:28
相关论文
共 50 条
  • [1] GP challenge: evolving energy function for protein structure prediction
    Paweł Widera
    Jonathan M. Garibaldi
    Natalio Krasnogor
    Genetic Programming and Evolvable Machines, 2010, 11 : 61 - 88
  • [2] The challenge of protein structure prediction
    Tramontano, A
    D'Alfonso, G
    Morea, V
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2002, 25 (7-8): : 202 - 214
  • [3] Evolutionary design of the energy function for protein structure prediction
    Widera, Pawel
    Garibaldi, Jonathan M.
    Krasnogor, Natalio
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 1305 - 1312
  • [4] Protein structure prediction by global optimization of a potential energy function
    Liwo, A
    Lee, J
    Ripoll, DR
    Pillardy, J
    Scheraga, HA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (10) : 5482 - 5485
  • [5] Automated protein function prediction - the genomic challenge
    Friedberg, Iddo
    BRIEFINGS IN BIOINFORMATICS, 2006, 7 (03) : 225 - 242
  • [6] PHYS 423-A tested energy function for protein structure prediction
    Lin, Matthew S.
    Head-Gordon, Teresa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 232
  • [7] Protein structure prediction using a hybrid energy function and an exact enumeration
    Cho, Kwang-Hwi
    Lee, Julian
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (02) : 873 - 879
  • [8] Prediction of protein structure by global optimization of a protein-free energy function.
    Liwo, A
    Czaplewski, C
    Pillardy, J
    Lee, JY
    Ripoll, DR
    Scheraga, HA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U284 - U284
  • [9] Recent improvements in prediction of protein structure by global optimization of a potential energy function
    Pillardy, A
    Czaplewski, C
    Liwo, A
    Lee, J
    Ripoll, DR
    Kazmierkiewicz, R
    Oldziej, S
    Wedemeyer, WJ
    Gibson, KD
    Arnautova, YA
    Saunders, J
    Ye, YJ
    Scheraga, HA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) : 2329 - 2333
  • [10] Using an Aggregation Tree to Arrange Energy Function Terms for Protein Structure Prediction
    Rocha, Gregorio K.
    Angelo, Jaqueline S.
    Santos, Karina B.
    Custodio, Fabio L.
    Dardenne, Laurent E.
    Barbosa, Helio J. C.
    2017 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2017, : 99 - 105