A MicroRNA93-Interferon Regulatory Factor-9-Immunoresponsive Gene-1-Itaconic Acid Pathway Modulates M2-Like Macrophage Polarization to Revascularize Ischemic Muscle

被引:123
作者
Ganta, Vijay Chaitanya [1 ]
Choi, Min Hyub [1 ]
Kutateladze, Anna [2 ]
Fox, Todd E. [3 ]
Farber, Charles R. [4 ]
Annex, Brian H. [1 ,5 ]
机构
[1] Univ Virginia, Cardiovascc Res Ctr, UVA Med Pk Northridge,Suite 201,2955 Ivy Rd, Charlottesville, VA 22903 USA
[2] Univ Virginia, Dept Biol, Charlottesville, VA USA
[3] Univ Virginia, Dept Pharmacol, Charlottesville, VA 22908 USA
[4] Univ Virginia, Dept Publ Hlth Sci, Charlottesville, VA USA
[5] Univ Virginia, Dept Cardiol, Charlottesville, VA USA
关键词
collateral circulation; macrophages; microRNAs; neovascularization; physiologic; peripheral arterial disease; PERIPHERAL ARTERIAL-DISEASE; SKELETAL-MUSCLE; THERAPEUTIC ANGIOGENESIS; MURINE MACROPHAGES; HINDLIMB ISCHEMIA; LIMB ISCHEMIA; FUNCTIONAL POLARIZATION; PERFUSION RECOVERY; ENDOTHELIAL-CELLS; ITACONIC ACID;
D O I
10.1161/CIRCULATIONAHA.116.025490
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Currently, no therapies exist for treating and improving outcomes in patients with severe peripheral artery disease (PAD). MicroRNA93 (miR93) has been shown to favorably modulate angiogenesis and to reduce tissue loss in genetic PAD models. However, the cell-specific function, downstream mechanisms, or signaling involved in miR93-mediated ischemic muscle neovascularization is not clear. Macrophages were best known to modulate arteriogenic response in PAD, and the extent of arteriogenic response induced by macrophages is dependent on greater M2 to M1 activation/polarization state. In the present study, we identified a novel mechanism by which miR93 regulates macrophage polarization to promote angiogenesis and arteriogenesis to revascularize ischemic muscle in experimental PAD. METHODS: In vitro (macrophages, endothelial cells, skeletal muscle cells under normal and hypoxia serum starvation conditions) and in vivo experiments in preclinical PAD models (unilateral femoral artery ligation and resection) were conducted to examine the role of miR93-interferon regulatory factor-9-immunoresponsive gene-1 (IRG1)-itaconic acid pathway in macrophage polarization, angiogenesis, arteriogenesis, and perfusion recovery. RESULTS: In vivo, compared with wild-type controls, miR106b-93-25 cluster-deficient mice (miR106b-93-25(-/-)) showed decreased angiogenesis and arteriogenesis correlating with increased M1-like macrophages after experimental PAD. Intramuscular delivery of miR93 in miR106b-93-25(-/-) PAD mice increased angiogenesis, arteriogenesis, and the extent of perfusion, which correlated with more M2-like macrophages in the proximal and distal hind-limb muscles. In vitro, miR93 promotes and sustains M2-like polarization even under M1-like polarizing conditions (hypoxia serum starvation). Delivery of bone marrow-derived macrophages from miR106b-93-25(-/-) to wild-type ischemic muscle decreased angiogenesis, arteriogenesis, and perfusion, whereas transfer of wild-type macrophages to miR106b-93-25(-/-) had the opposite effect. Systematic analysis of top differentially upregulated genes from RNA sequencing between miR106b-93-25(-/-) and wild-type ischemic muscle showed that miR93 regulates IRG1 function to modulate itaconic acid production and macrophage polarization. The 3' untranslated region luciferase assays performed to determine whether IRG1 is a direct target of miR93 revealed that IRG1 is not an miR93 target but that interferon regulatory factor-9, which can regulate IRG1 expression, is an miR93 target. In vitro, increased expression of interferon regulatory factor-9 and IRG1 and itaconic acid treatment significantly decreased endothelial angiogenic potential. CONCLUSIONS: miR93 inhibits interferon regulatory factor-9 to decrease IRG1-itaconic acid production to induce M2-like polarization in ischemic muscle to enhance angiogenesis, arteriogenesis, and perfusion recovery in experimental PAD.
引用
收藏
页码:2403 / +
页数:62
相关论文
共 70 条
[1]   Real-time imaging of peroxisome proliferator-activated receptor-γ coactivator-1α promoter activity in skeletal muscles of living mice [J].
Akimoto, T ;
Sorg, BS ;
Yan, Z .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2004, 287 (03) :C790-C796
[2]   Systematic validation of specific phenotypic markers for in vitro polarized human macrophages [J].
Ambarus, C. A. ;
Krausz, S. ;
van Eijk, M. ;
Hamann, J. ;
Radstake, T. R. D. J. ;
Reedquist, K. A. ;
Tak, P. P. ;
Baeten, D. L. P. .
JOURNAL OF IMMUNOLOGICAL METHODS, 2012, 375 (1-2) :196-206
[3]   Therapeutic angiogenesis for critical limb ischaemia [J].
Annex, Brian H. .
NATURE REVIEWS CARDIOLOGY, 2013, 10 (07) :387-396
[4]   Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages [J].
Basler, Tina ;
Jeckstadt, Sabine ;
Valentin-Weigand, Peter ;
Goethe, Ralph .
JOURNAL OF LEUKOCYTE BIOLOGY, 2006, 79 (03) :628-638
[5]   Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2 [J].
Cao, RH ;
Bråkenhielm, E ;
Pawliuk, R ;
Wariaro, D ;
Post, MJ ;
Wahlberg, E ;
Leboulch, P ;
Cao, YH .
NATURE MEDICINE, 2003, 9 (05) :604-613
[6]   A Recombinant Inhibitory Isoform of Vascular Endothelial Growth Factor164/165 Aggravates Ischemic Brain Damage in a Mouse Model of Focal Cerebral Ischemia [J].
Chaitanya, Ganta V. ;
Cromer, Walter E. ;
Parker, Courtney P. ;
Couraud, Pierre O. ;
Romero, Ignacio A. ;
Weksler, Babette ;
Mathis, J. Michael ;
Minagar, Alireza ;
Alexander, J. Steven .
AMERICAN JOURNAL OF PATHOLOGY, 2013, 183 (03) :1010-1024
[7]   Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia [J].
Chaitanya, Ganta Vijay ;
Minagar, Alireza ;
Alexander, Jonathan S. .
CELL COMMUNICATION AND SIGNALING, 2014, 12
[8]   The role of immune-related myeloid cells in angiogenesis [J].
Chambers, Sarah E. J. ;
O'Neill, Christina L. ;
O'Doherty, T. Michelle ;
Medina, Reinhold J. ;
Stitt, Alan W. .
IMMUNOBIOLOGY, 2013, 218 (11) :1370-1375
[9]   PADPIN: protein-protein interaction networks of angiogenesis, arteriogenesis, and inflammation in peripheral arterial disease [J].
Chu, Liang-Hui ;
Vijay, Chaitanya G. ;
Annex, Brian H. ;
Bader, Joel S. ;
Popel, Aleksander S. .
PHYSIOLOGICAL GENOMICS, 2015, 47 (08) :331-343
[10]   Re-thinking miRNA-mRNA interactions: Intertwining issues confound target discovery [J].
Cloonan, Nicole .
BIOESSAYS, 2015, 37 (04) :379-388