Non-Abelian monopole in the parameter space of point-like interactions

被引:8
|
作者
Ohya, Satoshi [1 ,2 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, Decin 40501, Czech Republic
[2] Czech Tech Univ, Doppler Inst Math Phys & Appl Math, Prague 11519, Czech Republic
关键词
Supersymmetric quantum mechanics; Geometric phase; Magnetic monopole; QUANTUM-MECHANICS; GAUGE STRUCTURE; SUPERSYMMETRY; PARTICLE; CIRCLE; FIELDS;
D O I
10.1016/j.aop.2014.10.013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study non-Abelian geometric phase in N = 2 supersymmetric quantum mechanics for a free particle on a circle with two point-like interactions at antipodal points. We show that non-Abelian Berry's connection is that of SU(2) magnetic monopole discovered by Moody, Shapere and Wilczek in the context of adiabatic decoupling limit of diatomic molecule. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:900 / 913
页数:14
相关论文
共 50 条
  • [1] Supersymmetry and non-Abelian geometric phase for a free particle on a circle with point-like interactions
    Ohya, Satoshi
    XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563
  • [2] ABELIAN AND NON-ABELIAN ANOMALIES IN MONOPOLE-FERMION INTERACTIONS
    EZAWA, ZF
    ANNALS OF PHYSICS, 1986, 171 (02) : 297 - 320
  • [3] QUANTIZED NON-ABELIAN MONOPOLE
    SEN, S
    TUITE, MP
    PHYSICAL REVIEW D, 1987, 36 (06): : 1939 - 1942
  • [4] Monopole vacuum in non-Abelian theories
    L. D. Lantsman
    V. N. Pervushin
    Physics of Atomic Nuclei, 2003, 66 : 1384 - 1394
  • [5] Monopole confinement in non-Abelian theories
    Kneipp, MAC
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (12): : 2085 - 2091
  • [6] Monopole vacuum in non-Abelian theories
    Lantsman, LD
    Pervushin, VN
    PHYSICS OF ATOMIC NUCLEI, 2003, 66 (07) : 1384 - 1394
  • [7] Non-Abelian monopole-vortex complex
    Cipriani, Mattia
    Dorigoni, Daniele
    Gudnason, Sven Bjarke
    Konishi, Kenichi
    Michelini, Alberto
    PHYSICAL REVIEW D, 2011, 84 (04):
  • [8] Conserved quantities in non-Abelian monopole fields
    Horvathy, P. A.
    Ngome, J. -P.
    PHYSICAL REVIEW D, 2009, 79 (12):
  • [9] Non-Abelian monopole interaction with external fields
    Kiselev, VG
    Shnir, YM
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 676 - 680
  • [10] ELECTROMAGNETIC-INTERACTION OF NON-ABELIAN MONOPOLE
    TOLKACHEV, EA
    DOKLADY AKADEMII NAUK BELARUSI, 1984, 28 (10): : 891 - 893