Jacobi polynomials and some connection formulas in terms of the action of linear differential operators

被引:3
作者
Aloui, Baghdadi [1 ]
Souissi, Jihad [2 ]
机构
[1] Higher Inst Ind Syst Gabes, Dept Electromech, St Salah Eddine Elayoubi, Gabes 6033, Tunisia
[2] Univ Gabes, Fac Sci Gabes, Dept Math, St Erriadh, Gabes 6072, Tunisia
关键词
Classical orthogonal polynomials; Linear functionals; Jacobi polynomials; Raising operators; Connection formulas; ORTHOGONAL POLYNOMIALS;
D O I
10.36045/j.bbms.200606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the concept of the J(alpha,beta)-classical orthogonal polynomials, where J(alpha,beta) is the raising operator J(alpha,beta) := (x(2) - 1) d/dx + (alpha + beta) x - alpha + beta)I, with alpha and beta nonzero complex numbers and I representing the identity operator. Then, we show that the Jacobi polynomials P-n((alpha,beta)) (x), n >= 0, where alpha, beta is an element of C\{0,-1,-2,...}, (alpha + beta not equal - m, m >= 0), are the only J(alpha,beta)-classical orthogonal polynomials. As an application, we give some new connection formulas satisfied by the polynomials solution of our problem.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 22 条
[1]  
Abdelkarim F., 1997, Results Math, V32, P1, DOI DOI 10.1007/BF03322520
[2]   CONNECTION FORMULAS AND REPRESENTATIONS OF LAGUERRE POLYNOMIALS IN TERMS OF THE ACTION OF LINEAR DIFFERENTIAL OPERATORS [J].
Aloui, B. ;
Kheriji, L. .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2019, 8 (03) :24-37
[3]   Chebyshev polynomials of the second kind via raising operator preserving the orthogonality [J].
Aloui, Baghdadi .
PERIODICA MATHEMATICA HUNGARICA, 2018, 76 (01) :126-132
[4]   Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising shift operator [J].
Aloui, Baghdadi .
RAMANUJAN JOURNAL, 2018, 45 (02) :475-481
[5]  
[Anonymous], 1975, Amer. Math. Soc. Colloq. Publ.
[6]   Classical symmetric orthogonal polynomials of a discrete variable [J].
Area, I ;
Godoy, E ;
Ronveaux, A ;
Zarzo, A .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (01) :1-12
[7]   A characterization of symmetric Tμ-classical monic orthogonal polynomials by a structure relation [J].
Ben Salah, I. ;
Ghressi, A. ;
Kheriji, L. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (06) :423-432
[8]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[9]   Characterization of q-Dunkl Appell symmetric orthogonal q-polynomials [J].
Bouanani, A. ;
Kheriji, L. ;
Tounsi, M. Ihsen .
EXPOSITIONES MATHEMATICAE, 2010, 28 (04) :325-336
[10]  
Chihara T.S., 1978, An Introduction to Orthogonal Polynomials, V13