Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature

被引:350
作者
Fryer, MJ [1 ]
Andrews, JR [1 ]
Oxborough, K [1 ]
Blowers, DA [1 ]
Baker, NR [1 ]
机构
[1] Univ Essex, Dept Biol Sci, Colchester CO4 3SQ, Essex, England
关键词
D O I
10.1104/pp.116.2.571
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Measurements of the quantum efficiencies of photosynthetic electron transport through photosystem II (phi(PSII)) and CO2 assimilation (phi(CO2)) were made simultaneously on leaves of maize (Zea mays) crops in the United Kingdom during the early growing season, when chilling conditions were experienced. The activities of a range of enzymes involved with scavenging active O-2 species and the levels of key antioxidants were also measured. When leaves were exposed to low temperatures during development, the ratio of phi(PSII)/phi(CO2) was elevated, indicating the operation of an alternative sink to CO2 for photosynthetic reducing equivalents. The activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and superoxide dismutase and the levels of ascorbate and alpha-tocopherol were also elevated during chilling periods. This supports the hypothesis that the relative flux of photosynthetic reducing equivalents to O-2 via the Mehler reaction is higher when leaves develop under chilling conditions. Lipoxygenase activity and lipid peroxidation were also increased during low temperatures, suggesting that lipoxygenase-mediated peroxidation of membrane lipids contributes to the oxidative damage occurring in chill-stressed leaves.
引用
收藏
页码:571 / 580
页数:10
相关论文
共 41 条
[1]   CHARACTERIZATION OF CHILLING EFFECTS ON PHOTOSYNTHETIC PERFORMANCE OF MAIZE CROPS DURING EARLY-SEASON GROWTH USING CHLOROPHYLL FLUORESCENCE [J].
ANDREWS, JR ;
FRYER, MJ ;
BAKER, NR .
JOURNAL OF EXPERIMENTAL BOTANY, 1995, 46 (290) :1195-1203
[2]  
Asada K., 1996, Photosynthesis and the environment. Advances in photosynthesis and respiration, P123, DOI DOI 10.1007/0-306-48135-9_5
[3]  
BAKER NR, 1994, BIOTECHNOLOGY AGR FO, V25, P465
[4]   ASSAYING FOR SUPEROXIDE-DISMUTASE ACTIVITY - SOME LARGE CONSEQUENCES OF MINOR CHANGES IN CONDITIONS [J].
BEYER, WF ;
FRIDOVICH, I .
ANALYTICAL BIOCHEMISTRY, 1987, 161 (02) :559-566
[5]  
Cheeseman J, 1994, PHOTOINHIBITION PHOT, P377
[6]   VOLATILE PRODUCTS OF THE LIPOXYGENASE PATHWAY EVOLVED FROM PHASEOLUS-VULGARIS (L) LEAVES INOCULATED WITH PSEUDOMONAS-SYRINGAE PV-PHASEOLICOLA [J].
CROFT, KPC ;
JUTTNER, F ;
SLUSARENKO, AJ .
PLANT PHYSIOLOGY, 1993, 101 (01) :13-24
[7]   CAN CO2 ASSIMILATION IN MAIZE LEAVES BE PREDICTED ACCURATELY FROM CHLOROPHYLL FLUORESCENCE ANALYSIS [J].
EDWARDS, GE ;
BAKER, NR .
PHOTOSYNTHESIS RESEARCH, 1993, 37 (02) :89-102
[8]   CARBON ISOTOPE DISCRIMINATION MEASURED CONCURRENTLY WITH GAS-EXCHANGE TO INVESTIGATE CO2 DIFFUSION IN LEAVES OF HIGHER-PLANTS [J].
EVANS, JR ;
SHARKEY, TD ;
BERRY, JA ;
FARQUHAR, GD .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1986, 13 (02) :281-292
[9]   ON THE NATURE OF CARBON ISOTOPE DISCRIMINATION IN C-4 SPECIES [J].
FARQUHAR, GD .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1983, 10 (02) :205-226
[10]   FACTORS ASSOCIATED WITH DEPRESSION OF PHOTOSYNTHETIC QUANTUM EFFICIENCY IN MAIZE AT LOW GROWTH TEMPERATURE [J].
FRYER, MJ ;
OXBOROUGH, K ;
MARTIN, B ;
ORT, DR ;
BAKER, NR .
PLANT PHYSIOLOGY, 1995, 108 (02) :761-767