The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration

被引:123
作者
Nozette, Stewart [2 ]
Spudis, Paul [2 ]
Bussey, Ben [1 ]
Jensen, Robert [1 ]
Raney, Keith [1 ]
Winters, Helene [1 ]
Lichtenberg, Christopher L. [3 ]
Marinelli, William [4 ]
Crusan, Jason [4 ]
Gates, Michele [4 ]
Robinson, Mark [5 ]
机构
[1] Appl Phys Lab, Laurel, MD 20723 USA
[2] Lunar & Planetary Inst, Houston, TX 77058 USA
[3] USN, Air Warfare Ctr, China Lake, CA 93555 USA
[4] NASA, Washington, DC 20546 USA
[5] Arizona State Univ, Tempe, AZ USA
关键词
Lunar Reconnaissance Orbiter; Mini RF; Lunar poles; SOUTH-POLE; RADAR EXPERIMENT; ICE; DEPOSITS; MOON; SAR;
D O I
10.1007/s11214-009-9607-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Miniature Radio Frequency (Mini-RF) system is manifested on the Lunar Reconnaissance Orbiter (LRO) as a technology demonstration and an extended mission science instrument. Mini-RF represents a significant step forward in spaceborne RF technology and architecture. It combines synthetic aperture radar (SAR) at two wavelengths (S-band and X-band) and two resolutions (150 m and 30 m) with interferometric and communications functionality in one lightweight (16 kg) package. Previous radar observations (Earth-based, and one bistatic data set from Clementine) of the permanently shadowed regions of the lunar poles seem to indicate areas of high circular polarization ratio (CPR) consistent with volume scattering from volatile deposits (e.g. water ice) buried at shallow (0.1-1 m) depth, but only at unfavorable viewing geometries, and with inconclusive results. The LRO Mini-RF utilizes new wideband hybrid polarization architecture to measure the Stokes parameters of the reflected signal. These data will help to differentiate "true" volumetric ice reflections from "false" returns due to angular surface regolith. Additional lunar science investigations (e.g. pyroclastic deposit characterization) will also be attempted during the LRO extended mission. LRO's lunar operations will be contemporaneous with India's Chandrayaan-1, which carries the Forerunner Mini-SAR (S-band wavelength and 150-m resolution), and bistatic radar (S-Band) measurements may be possible. On orbit calibration, procedures for LRO Mini-RF have been validated using Chandrayaan 1 and ground-based facilities (Arecibo and Greenbank Radio Observatories).
引用
收藏
页码:285 / 302
页数:18
相关论文
共 18 条
[1]   ICE IN THE LUNAR POLAR REGIONS [J].
ARNOLD, JR .
JOURNAL OF GEOPHYSICAL RESEARCH, 1979, 84 (NB10) :5659-5668
[2]  
BUTLER B, 1997, J GEOPHYS RES, V109, P19283
[3]   No evidence for thick deposits of ice at the lunar south pole [J].
Campbell, Donald B. ;
Campbell, Bruce A. ;
Carter, Lynn M. ;
Margot, Jean-Luc ;
Stacy, Nicholas J. S. .
NATURE, 2006, 443 (7113) :835-837
[4]   Models of the distribution and abundance of hydrogen at the lunar south pole [J].
Elphic, R. C. ;
Eke, V. R. ;
Teodoro, L. F. A. ;
Lawrence, D. J. ;
Bussey, D. B. J. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (13)
[5]   Polar hydrogen deposits on the Moon [J].
Feldman, WC ;
Lawrence, DJ ;
Elphic, RC ;
Barraclough, BL ;
Maurice, S ;
Genetay, I ;
Binder, AB .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2000, 105 (E2) :4175-4195
[6]   Fluxes of fast and epithermal neutrons from lunar prospector: Evidence for water ice at the lunar poles [J].
Feldman, WC ;
Maurice, S ;
Binder, AB ;
Barraclough, BL ;
Elphic, RC ;
Lawrence, DJ .
SCIENCE, 1998, 281 (5382) :1496-1500
[7]   RADAR MAPPING OF MERCURY - FULL-DISK IMAGES AND POLAR ANOMALIES [J].
HARMON, JK ;
SLADE, MA .
SCIENCE, 1992, 258 (5082) :640-643
[8]   POLARIZATION CHARACTERISTICS OF THE COHERENT BACKSCATTER OPPOSITION EFFECT [J].
MISHCHENKO, MI .
EARTH MOON AND PLANETS, 1992, 58 (02) :127-144
[9]   Illumination conditions at the lunar polar regions by KAGUYA(SELENE) laser altimeter [J].
Noda, H. ;
Araki, H. ;
Goossens, S. ;
Ishihara, Y. ;
Matsumoto, K. ;
Tazawa, S. ;
Kawano, N. ;
Sasaki, S. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (24)
[10]  
Nozette S, 1997, SCIENCE, V278, P144