Cas9 Variants Expand the Target Repertoire in Caenorhabditis elegans

被引:20
作者
Bell, Ryan T. [1 ]
Fu, Becky X. H. [1 ]
Fire, Andrew Z. [1 ,2 ]
机构
[1] Stanford Univ, Sch Med, Dept Genet, 300 Pasteur Dr,L302, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Dept Pathol, 300 Pasteur Dr,L302, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
alternate PAMs; C; elegans; CRISPR/Cas9; genome editing; VQR Cas9; C; ELEGANS; HOMOLOGOUS RECOMBINATION; GENOME; RNA; SPECIFICITY; GENES; ENDONUCLEASE; CRISPR/CAS9; EXPRESSION; NUCLEASES;
D O I
10.1534/genetics.115.185041
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The proliferation of CRISPR/Cas9-based methods in Caenorhabditis elegans has enabled efficient genome editing and precise genomic tethering of Cas9 fusion proteins. Experimental designs using CRISPR/Cas9 are currently limited by the need for a protospacer adjacent motif (PAM) in the target with the sequence NGG. Here we report the characterization of two modified Cas9 proteins in C. elegans that recognize NGA and NGCG PAMs. We found that each variant could stimulate homologous recombination with a donor template at multiple loci and that PAM specificity was comparable to that of wild-type Cas9. To directly compare effectiveness, we used CRISPR/Cas9 genome editing to generate a set of assay strains with a common single-guide RNA (sgRNA) target sequence, but that differ in the juxtaposed PAM (NGG, NGA, or NGCG). In this controlled setting, we determined that the NGA PAM Cas9 variant can be as effective as wild-type Cas9. We similarly edited a genomic target to study the influence of the base following the NGA PAM. Using four strains with four NGAN PAMs differing only at the fourth position and adjacent to the same sgRNA target, we observed that efficient homologous replacement was attainable with any base in the fourth position, with an NGAG PAM being the most effective. In addition to demonstrating the utility of two Cas9 mutants in C. elegans and providing reagents that permit CRISPR/Cas9 experiments with fewer restrictions on potential targets, we established a means to benchmark the efficiency of different Cas9::PAM combinations that avoids variations owing to differences in the sgRNA sequence.
引用
收藏
页码:381 / +
页数:19
相关论文
共 36 条
[1]   Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease [J].
Anders, Carolin ;
Niewoehner, Ole ;
Duerst, Alessia ;
Jinek, Martin .
NATURE, 2014, 513 (7519) :569-+
[2]   Efficient Marker-Free Recovery of Custom Genetic Modifications with CRISPR/Cas9 in Caenorhabditis elegans [J].
Arribere, Joshua A. ;
Bell, Ryan T. ;
Fu, Becky X. H. ;
Artiles, Karen L. ;
Hartman, Phil S. ;
Fire, Andrew Z. .
GENETICS, 2014, 198 (03) :837-U842
[3]  
BRENNER S, 1974, GENETICS, V77, P71
[4]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[5]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343
[6]   Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette [J].
Dickinson, Daniel J. ;
Pani, Ariel M. ;
Heppert, Jennifer K. ;
Higgins, Christopher D. ;
Goldstein, Bob .
GENETICS, 2015, 200 (04) :1035-+
[7]   Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination [J].
Dickinson, Daniel J. ;
Ward, Jordan D. ;
Reiner, David J. ;
Goldstein, Bob .
NATURE METHODS, 2013, 10 (10) :1028-+
[8]  
Esvelt KM, 2013, NAT METHODS, V10, P1116, DOI [10.1038/NMETH.2681, 10.1038/nmeth.2681]
[9]   Nucleic acid structure and intracellular immunity: some recent ideas from the world of RNAi [J].
Fire, Andrew .
QUARTERLY REVIEWS OF BIOPHYSICS, 2005, 38 (04) :303-309
[10]   Heritable genome editing in C. elegans via a CRISPR-Cas9 system [J].
Friedland, Ari E. ;
Tzur, Yonatan B. ;
Esvelt, Kevin M. ;
Colaiacovo, Monica P. ;
Church, George M. ;
Calarco, John A. .
NATURE METHODS, 2013, 10 (08) :741-+