Positive Solution to a Nonlinear Elliptic Problem

被引:2
作者
Ghardallou, Zeineb [1 ,2 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Dept Math Anal & Applicat, LR11ES11,El Manar 1, Tunis 2092, Tunisia
[2] Univ Wroclaw, Inst Math, Plac Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
关键词
Nonlinear elliptic problems; Regular domain; Greenian domain; Green function; EXISTENCE;
D O I
10.1007/s11118-015-9509-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a second order elliptic operator with smooth coefficients satisfying L1 = 0 defined in a domain Omega that is Greenian for L. Under fairly general hypotheses on the function phi, we solve the following problem: {Lu + phi(., u) = 0 in the sense of distributions in Omega; u > 0, in Omega; u = 0, on partial derivative Omega.
引用
收藏
页码:449 / 472
页数:24
相关论文
共 26 条
[1]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[2]  
[Anonymous], ELECT J DIFFERENTIAL
[3]  
[Anonymous], LECT NOTES MATH
[4]  
[Anonymous], ANN I FOURIER
[5]  
[Anonymous], PACIFIC J MATH
[7]   A GLOBAL ESTIMATE FOR THE GRADIENT IN A SINGULAR ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
DELPINO, MA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 122 :341-352
[8]   On Very Weak Positive Solutions to Some Semilinear Elliptic Problems With Simultaneous Singular Nonlinear and Spatial Dependence Terms [J].
Diaz, J. I. ;
Hernandez, J. ;
Rakotoson, J. M. .
MILAN JOURNAL OF MATHEMATICS, 2011, 79 (01) :233-245
[9]   Solutions of semilinear differential equations related to harmonic functions [J].
Dynkin, EB .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 170 (02) :464-474
[10]   Nonradial large solutions of sublinear elliptic problems [J].
El Mabrouk, Khalifa ;
Hansen, Wolfhard .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) :1025-1041