Controllable Shifts in Threshold Voltage of Top-Gate Polymer Field-Effect Transistors for Applications in Organic Nano Floating Gate Memory

被引:263
作者
Baeg, Kang-Jun [1 ,4 ]
Noh, Yong-Young [1 ,2 ]
Sirringhaus, Henning [3 ]
Kim, Dong-Yu [4 ]
机构
[1] Elect & Telecommun Res Inst, Convergence Components & Mat Res Lab, Taejon 305350, South Korea
[2] Hanbat Natl Univ, Dept Chem Engn, Taejon 305719, South Korea
[3] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England
[4] GIST, Heeger Ctr Adv Mat, Dept Mat Sci & Engn, Kwangju 500712, South Korea
关键词
THIN-FILM; GOLD NANOPARTICLES;
D O I
10.1002/adfm.200901677
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic field-effect transistor (FET) memory is an emerging technology with the potential to realize light-weight, low-cost, flexible charge storage media. Here, solution-processed poly[9,9-dioctylfluorenyl-2,7-diyl]-co-(bithiophene)] (F8T2) nano floating gate memory (NFGM) with a top-gate/bottom-contact device configuration is reported. A reversible shift in the threshold voltage (V-Th) and reliable memory characterics was achieved by the incorporation of thin Au nanoparticles (NPs) as charge storage sites for negative charges (electrons) at the interface between polystyrene and cross-linked poly(4-vinylphenol). The F8T2 NFGM showed relatively high field-effect mobility (mu(FET)) (0.02 cm(2) V-1 s(-1)) for an amorphous semiconducting polymer with a large memory window (ca. 30 V), a high on/off ratio (more than 10(4)) during writing and erasing with an operation voltage of 80V of gate bias in a relatively short timescale (less than 1 s), and a retention time of a few hours. This top-gated polymer NFGM could be used as organic transistor memory element for organic flash memory.
引用
收藏
页码:224 / 230
页数:7
相关论文
共 51 条
[41]   Analysis of the contact resistance in staggered, top-gate organic field-effect transistors [J].
Richards, T. J. ;
Sirringhaus, H. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (09)
[42]   A quantitative analytical model for static dipolar disorder broadening of the density of states at organic heterointerfaces [J].
Richards, Tim ;
Bird, Matthew ;
Sirringhaus, Henning .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (23)
[43]  
Schroder DK, 1998, Semiconductor Material and Device Characterization
[44]   All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator [J].
Schroeder, R ;
Majewski, LA ;
Grell, M .
ADVANCED MATERIALS, 2004, 16 (07) :633-+
[45]   Nonvolatile organic field-effect transistor memory element with a polymeric gate electret [J].
Singh, TB ;
Marjanovic, N ;
Matt, GJ ;
Sariciftci, NS ;
Schwödiauer, R ;
Bauer, S .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5409-5411
[46]   High-resolution inkjet printing of all-polymer transistor circuits [J].
Sirringhaus, H ;
Kawase, T ;
Friend, RH ;
Shimoda, T ;
Inbasekaran, M ;
Wu, W ;
Woo, EP .
SCIENCE, 2000, 290 (5499) :2123-2126
[47]  
Sze S. M., 2007, Physics of Semiconductor Devices, V3rd, DOI DOI 10.1002/0470068329
[48]   Polyaniline nanofiber/gold nanoparticle nonvolatile memory [J].
Tseng, RJ ;
Huang, JX ;
Ouyang, J ;
Kaner, RB ;
Yang, Y .
NANO LETTERS, 2005, 5 (06) :1077-1080
[49]  
Vaeth K. M., 2003, Information Display, V19, P12
[50]   Gate insulators in organic field-effect transistors [J].
Veres, J ;
Ogier, S ;
Lloyd, G ;
de Leeuw, D .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4543-4555