Plakophilin 1-deficient cells upregulate SPOCK1: implications for prostate cancer progression

被引:29
作者
Yang, Cheng [1 ,2 ,5 ]
Fischer-Keso, Regina [1 ,2 ]
Schlechter, Tanja [1 ,2 ]
Stroebel, Philipp [3 ]
Marx, Alexander [4 ]
Hofmann, Ilse [1 ,2 ]
机构
[1] German Canc Res Ctr, DKFZ ZMBH Alliance, Div Vasc Oncol & Metastasis, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Med Fac Mannheim, Dept Vasc Biol & Tumor Angiogenesis CBTM, Mannheim, Germany
[3] Univ Med Ctr Groningen, Inst Pathol, Gottingen, Germany
[4] Heidelberg Univ, Univ Med Ctr Mannheim, Inst Pathol, Mannheim, Germany
[5] Anhui Med Univ, Affiliated Hosp 1, Dept Urol, Hefei, Peoples R China
关键词
Prostate cancer; PKP1; SPOCK1; Extracellular matrix; Testican-1; RNA-BINDING PROTEINS; EXTRACELLULAR-MATRIX; DESMOSOMAL PLAKOPHILINS; MESENCHYMAL TRANSITION; MESSENGER-RNA; EXPRESSION; PKP1; GENE; PROTEOGLYCAN; TESTICAN-1;
D O I
10.1007/s13277-015-3628-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Plakophilin (PKP) 1 is frequently downregulated in prostate cancer and therefore may play a tumor-suppressive role. In the present study, we stably knocked down PKP1 in the non-neoplastic, prostatic BPH-1 cell line. In the PKP1-deficient cells, the expression of keratin 14 was lost, and the apoptosis rate was significantly reduced indicating that the cells acquired new biological capabilities. Moreover, we analyzed the gene expression profile of the PKP1-deficient BPH-1 cells. Among the genes that were significantly altered upon PKP1 knockdown, we noticed several extracellular matrix (ECM)-related genes and identified sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1/testican-1) as a gene of interest. SPOCK1 is a component of the ECM and belongs to a matricellular protein family named secreted protein, acidic, cysteine-rich (SPARC). The role of SPOCK1 in prostate cancer has not been clearly elucidated. We analyzed SPOCK1 mRNA expression levels in different cancer databases and characterized its expression in 136 prostatic adenocarcinomas by immunohistochemistry and western blot. SPOCK1 revealed a cytoplasmic localization in the glandular epithelium of the prostate and showed a significant upregulation of mRNA and protein in prostate tumor samples. Our findings support the hypothesis that PKP1 may have a tumor-suppressive function and suggest an important role of SPOCK1 in prostate tumor progression. Collectively, altered expression of PKP1 and SPOCK1 appears to be a frequent and critical event in prostate cancer.
引用
收藏
页码:9567 / 9577
页数:11
相关论文
共 50 条
[31]   GAD1 contributes to the progression and drug resistance in castration resistant prostate cancer [J].
Wan, Lilin ;
Liu, Yifan ;
Liu, Ruiji ;
Mao, Weipu .
CANCER CELL INTERNATIONAL, 2023, 23 (01)
[32]   Another road leads to HIF-1 activation: implications for prostate cancer progression [J].
Dai, Yao ;
Bae, Kyungmi ;
Siemann, Dietmar W. .
ASIAN JOURNAL OF ANDROLOGY, 2012, 14 (02) :241-242
[33]   SPOCK1 is a novel transforming growth factor-β target gene that regulates lung cancer cell epithelial-mesenchymal transition [J].
Miao, Liyun ;
Wang, Yongsheng ;
Xia, Hongping ;
Yao, Chengyun ;
Cai, Hourong ;
Song, Yong .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 440 (04) :792-797
[34]   LMNB1 targets FOXD1 to promote progression of prostate cancer [J].
Huang, Yuanshe ;
Zhang, Lai ;
Liu, Tianlei ;
Liang, E. .
EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2023, 26 (05)
[35]   Androgen receptor-interacting protein HSPBAP1 facilitates growth of prostate cancer cells in androgen-deficient conditions [J].
Saeed, Khalid ;
Ostling, Paivi ;
Bjorkman, Mari ;
Mirtti, Tuomas ;
Alanen, Kalle ;
Vesterinen, Tiina ;
Sankila, Anna ;
Lundin, Johan ;
Lundin, Mikael ;
Rannikko, Antti ;
Nordling, Stig ;
Mpindi, John-Patrick ;
Kohonen, Pekka ;
Iljin, Kristiina ;
Kallioniemi, Olli ;
Rantala, Juha K. .
INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (11) :2535-2545
[36]   Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells [J].
Gueron, Geraldine ;
Giudice, Jimena ;
Valacco, Pia ;
Paez, Alejandra ;
Elguero, Belen ;
Toscani, Martin ;
Jaworski, Felipe ;
Coluccio Leskow, Federico ;
Cotignola, Javier ;
Marti, Marcelo ;
Binaghi, Maria ;
Navone, Nora ;
Vazquez, Elba .
ONCOTARGET, 2014, 5 (12) :4087-4102
[37]   The role of caveolin-1 in prostate cancer: clinical implications [J].
Thompson, T. C. ;
Tahir, S. A. ;
Li, L. ;
Watanabe, M. ;
Naruishi, K. ;
Yang, G. ;
Kadmon, D. ;
Logothetis, C. J. ;
Troncoso, P. ;
Ren, C. ;
Goltsov, A. ;
Park, S. .
PROSTATE CANCER AND PROSTATIC DISEASES, 2010, 13 (01) :6-11
[38]   Overexpression of cofilin 1 in prostate cancer and the corresponding clinical implications [J].
Lu, Li ;
Fu, Ni ;
Luo, Xu ;
L, Xiao-Yun, I ;
Li, Xiao-Ping .
ONCOLOGY LETTERS, 2015, 9 (06) :2757-2761
[39]   LMNB1, a potential marker for early prostate cancer progression [J].
Hong, Jian-Hua ;
Liang, Sung-Tzu ;
Wang, Alexander Sheng-Shin ;
Yeh, Chia-Ming ;
Huang, Hsiang-Po ;
Sun, Chia-Dong ;
Zhang, Zong-Han ;
Lu, Shih-Yu ;
Chao, Yen-Hsiang ;
Chen, Chung-Hsin ;
Pu, Yeong-Shiau .
AMERICAN JOURNAL OF CANCER RESEARCH, 2022, 12 (07) :3390-3404
[40]   Role of Transcriptional Corepressor CtBP1 in Prostate Cancer Progression [J].
Wang, Rui ;
Asangani, Irfan A. ;
Chakravarthi, Balabhadrapatruni V. S. K. ;
Ateeq, Bushra ;
Lonigro, Robert J. ;
Cao, Qi ;
Mani, Ram-Shankar ;
Camacho, Daniel F. ;
McGregor, Natalie ;
Schumann, Taibriana E. W. ;
Jing, Xiaojun ;
Menawat, Radhika ;
Tomlins, Scott A. ;
Zheng, Heng ;
Otte, Arie P. ;
Mehra, Rohit ;
Siddiqui, Javed ;
Dhanasekaran, Saravana M. ;
Nyati, Mukesh K. ;
Pienta, Kenneth J. ;
Palanisamy, Nallasivam ;
Kunju, Lakshmi P. ;
Rubin, Mark A. ;
Chinnaiyan, Arul M. ;
Varambally, Sooryanarayana .
NEOPLASIA, 2012, 14 (10) :905-U46