Hybrid Lattice Boltzmann-finite difference model for low mach number combustion simulation

被引:37
作者
Hosseini, Seyed Ali [1 ,2 ,3 ]
Safari, Hesam [4 ]
Darabiha, Nasser [2 ]
Thevenin, Dominique [1 ]
Krafczyk, Manfred [4 ]
机构
[1] Univ Magdeburg Otto von Guericke, Lab Fluid Dynam & Tech Flows, D-39106 Magdeburg, Germany
[2] Univ Paris Saclay, CNRS, Cent Supelec, Lab EM2C, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[3] Int Max Planck Res Sch IMPRS Adv Methods Proc & S, Magdeburg, Germany
[4] Tech Univ Carolo Wilhelmina Braunschweig, Inst Computat Modeling Civil Engn, Braunschweig, Germany
关键词
Lattice Boltzmann; Finite difference; Combustion; Thermal dilatation; Detailed thermo-chemical models; LARGE-EDDY SIMULATION; GALILEAN INVARIANCE; PARAMETRIZATION; IMPACT; SCHEME;
D O I
10.1016/j.combustflame.2019.07.041
中图分类号
O414.1 [热力学];
学科分类号
摘要
A hybrid Lattice Boltzmann(LB)-finite difference(FD) numerical scheme for the simulation of reacting flows at low Mach numbers is presented. The FD solver is used to model the energy and species fields while the LB model computes the flow field. The proposed LB solver is a modified version of the classical iso-thermal weakly compressible LB scheme with the hydrodynamic pressure as its zeroth-order moment instead of density, recovering the well-known low Mach number approximation for thermo-compressible flows. The proposed numerical approach is used to model a variety of test-cases ranging from 1-D to 3-D configurations, involving premixed and non-premixed flames. In all cases results obtained by this solver are shown to agree very well with reference data. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 404
页数:11
相关论文
共 65 条
[1]   Conservative phase-field lattice-Boltzmann model for ternary fluids [J].
Abadi, Reza Haghani Hassan ;
Rahimian, Mohammad Hassan ;
Fakhari, Abbas .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 374 :668-691
[2]   Towards direct numerical simulations of low-Mach number turbulent reacting and two-phase flows using immersed boundaries [J].
Abdelsamie, Abouelmagd ;
Fru, Gordon ;
Oster, Timo ;
Dietzsch, Felix ;
Janiga, Gabor ;
Thevenin, Dominique .
COMPUTERS & FLUIDS, 2016, 131 :123-141
[3]   Large Eddy Simulation of liquid sheet breakup using a two-phase lattice Boltzmann method [J].
Amirshaghaghi, Hadi ;
Rahimian, Mohammad Hassan ;
Safari, Hesameddin ;
Krafczyk, Manfred .
COMPUTERS & FLUIDS, 2018, 160 :93-107
[4]   Lattice Boltzmann simulation of catalytic reactions [J].
Arcidiacono, S. ;
Mantzaras, J. ;
Karlin, I. V. .
PHYSICAL REVIEW E, 2008, 78 (04)
[5]   Entropic lattice Boltzmann methods [J].
Boghosian, BM ;
Yepez, J ;
Coveney, PV ;
Wager, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2007) :717-766
[6]   Maxwell-Stefan-theory-based lattice Boltzmann model for diffusion in multicomponent mixtures [J].
Chai, Zhenhua ;
Guo, Xiuya ;
Wang, Lei ;
Shi, Baochang .
PHYSICAL REVIEW E, 2019, 99 (02)
[7]   Recovery of full rotational invariance in lattice Boltzmann formulations for high Knudsen number flows [J].
Chen, H ;
Zhang, R ;
Staroselsky, I ;
Jhon, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 362 (01) :125-131
[8]   A simple lattice Boltzmann scheme for combustion simulation [J].
Chen, Sheng ;
Liu, Zhaohui ;
Tian, Zhiwei ;
Shi, Baochang ;
Zheng, Chuguang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (07) :1424-1432
[9]   A novel coupled lattice Boltzmann model for low Mach number combustion simulation [J].
Chen, Sheng ;
Liu, Zhaohui ;
Zhang, Chao ;
He, Zhu ;
Tian, Zhiwei ;
Shi, Baochang ;
Zheng, Chuguang .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (01) :266-284
[10]   Coupling of the model reduction technique with the lattice Boltzmann method for combustion simulations [J].
Chiavazzo, Eliodoro ;
Karlin, Iliya V. ;
Gorban, Alexander N. ;
Boulouchos, Konstantinos .
COMBUSTION AND FLAME, 2010, 157 (10) :1833-1849