On the 1.375-Approximation Algorithm for Sorting by Transpositions in O(n log n) Time
被引:0
作者:
Cunha, Luis Felipe I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, BR-21941 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, BR-21941 Rio De Janeiro, Brazil
Cunha, Luis Felipe I.
[1
]
Kowada, Luis Antonio B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Fluminense, Niteroi, RJ, BrazilUniv Fed Rio de Janeiro, BR-21941 Rio De Janeiro, Brazil
Kowada, Luis Antonio B.
[2
]
Hausen, Rodrigo de A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed ABC, Santo Andre, BrazilUniv Fed Rio de Janeiro, BR-21941 Rio De Janeiro, Brazil
Hausen, Rodrigo de A.
[3
]
de Figueiredo, Celina M. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, BR-21941 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, BR-21941 Rio De Janeiro, Brazil
de Figueiredo, Celina M. H.
[1
]
机构:
[1] Univ Fed Rio de Janeiro, BR-21941 Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, Niteroi, RJ, Brazil
[3] Univ Fed ABC, Santo Andre, Brazil
来源:
ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY
|
2013年
/
8213卷
关键词:
comparative genomics;
genome rearrangement;
sorting by transpositions;
approximation algorithms;
SIGNED PERMUTATIONS;
REVERSALS;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Sorting by Transpositions is an NP-hard problem. Elias and Hartman proposed a 1.375-approximation algorithm, the best ratio so far, which runs in O(n(2)) time. Firoz et al. proposed an improvement to the running time, from O(n(2)) down to O(n log n), using Feng and Zhu's permutation trees. We provide counter-examples to the correctness of Firoz et al.' s strategy, showing that it is not possible to reach a component by sufficient extensions using the method proposed by them.