Correlation between DCE-MRI radiomics features and Ki-67 expression in invasive breast cancer

被引:47
作者
Juan, Ma-Wen [1 ,2 ,3 ,4 ,5 ]
Yu, Ji [1 ,2 ,3 ,4 ]
Peng, Guo-Xin [1 ,2 ,3 ,4 ]
Jun, Liu-Jun [1 ,2 ,3 ,4 ]
Feng, Sun-Peng [1 ,2 ,3 ,4 ]
Fang, Liu-Pei [1 ,2 ,3 ,4 ]
机构
[1] Tianjin Med Univ Canc Inst & Hosp, Dept Breast Imaging, Natl Clin Res Ctr Canc, 1 Huanhuxi Rd, Tianjin 300060, Peoples R China
[2] Tianjin Med Univ, Key Lab Breast Canc Prevent & Therapy, Minist Educ, Tianjin, Peoples R China
[3] Tianjin Med Univ, Tianjins Clin Res Ctr Canc, Minist Educ, Tianjin, Peoples R China
[4] Tianjin Med Univ, Key Lab Canc Prevent & Therapy, Minist Educ, Tianjin, Peoples R China
[5] Tianjin Med Univ, Dept Biomed & Engn, Tianjin 300060, Peoples R China
关键词
magnetic resonance imaging; proliferation; Ki-67; expression; radiomics; invasive breast cancer; NEOADJUVANT CHEMOTHERAPY; IMAGES; HETEROGENEITY; CHALLENGES; PREDICTION;
D O I
10.3892/ol.2018.9271
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The aim of the present study was to investigate the association between Ki-67 expression and radiomics features of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with invasive breast cancer. A total of 53 cases with low-Ki-67 expression (Ki-67 proliferation index <14%) and 106 cases with high-Ki-67 expression (Ki-67 proliferation index >14%) were investigated. A systematic approach was applied that focused on the automated segmentation of lesions and extraction of radiomics features. For each lesion 5 morphology, 4 gray-scale histogram and 6 texture features were obtained, and statistical analyzes were performed to assess the differences in these features between the low- and high-Ki-67 expressions. One morphology metric (area), 3 gray-scale histogram indexes (standard deviation, skewness and kurtosis) and 3 texture features (contrast, homogeneity and inverse differential moment) demonstrated a significant difference (P<0.05), with low-Ki-67 expression lesions tending to be smaller, clearer and heterogeneous when compared with the high-Ki-67 expressed cases. These results may provide a noninvasive means to better understand the proliferation of breast cancer.
引用
收藏
页码:5084 / 5090
页数:7
相关论文
共 50 条
[41]   Radiomics Integration of Mammography and DCE-MRI for Predicting Molecular Subtypes in Breast Cancer Patients [J].
Yang, Xianwei ;
Li, Jing ;
Sun, Hang ;
Chen, Jing ;
Xie, Jin ;
Peng, Yonghui ;
Shang, Tao ;
Pan, Tongyong .
BREAST CANCER-TARGETS AND THERAPY, 2025, 17 :187-200
[42]   Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer [J].
Fan, Ming ;
Li, Hui ;
Wang, Shijian ;
Zheng, Bin ;
Zhang, Juan ;
Li, Lihua .
PLOS ONE, 2017, 12 (02)
[43]   Development of an interpretable machine learning model for Ki-67 prediction in breast cancer using intratumoral and peritumoral ultrasound radiomics features [J].
Wang, Jing ;
Gao, Weiwei ;
Lu, Min ;
Yao, Xiaohua ;
Yang, Debin .
FRONTIERS IN ONCOLOGY, 2023, 13
[44]   Multiparametric MRI radiomics in prostate cancer for predicting Ki-67 expression and Gleason score: a multicenter retrospective study [J].
Zhou, Chuan ;
Zhang, Yun-Feng ;
Guo, Sheng ;
Wang, Dong ;
Lv, Hao-Xuan ;
Qiao, Xiao-Ni ;
Wang, Rong ;
Chang, De-Hui ;
Zhao, Li-Ming ;
Zhou, Feng-Hai .
DISCOVER ONCOLOGY, 2023, 14 (01)
[45]   Multiparametric MRI radiomics in prostate cancer for predicting Ki-67 expression and Gleason score: a multicenter retrospective study [J].
Chuan Zhou ;
Yun-Feng Zhang ;
Sheng Guo ;
Dong Wang ;
Hao-Xuan Lv ;
Xiao-Ni Qiao ;
Rong Wang ;
De-Hui Chang ;
Li-Ming Zhao ;
Feng-Hai Zhou .
Discover Oncology, 14
[46]   Correlation of the expression of Ki-67 with the histopathological features and grade of meningioma [J].
Al-Abqary, Rais ;
Widodo, Djoko ;
Ihwan, Andi ;
Bahar, Burhanuddin ;
Islam, Andi A. ;
Mustamir, Nasrullah ;
Adhimarta, Willy ;
Wahyudi, Wahyudi ;
Cangara, Muhammad H. ;
Faruk, Muhammad .
CHIRURGIA-ITALY, 2024, 37 (02) :57-61
[47]   Concordance between Ki-67 index in invasive breast cancer and molecular signatures: EndoPredict and MammaPrint [J].
Amezcua-Galvez, Jesus Eduardo ;
Lopez-Garcia, Carlos A. ;
Villarreal-Garza, Cynthia ;
Lopez-Rivera, Victor ;
Canavati-Marcos, Mauricio ;
Santuario-Facio, Sandra ;
Dono, Antonio ;
Monroig-Bosque, Paloma Del C. ;
Ortiz-Lopez, Rocio ;
Leal-Lopez, Andrea ;
Gomez-Macias, Gabriela Sofia .
MOLECULAR AND CLINICAL ONCOLOGY, 2022, 17 (03)
[48]   Identifying ultrasound features of positive expression of Ki67 and P53 in breast cancer using radiomics [J].
Cui, Hao ;
Zhang, Dandan ;
Peng, Fuhui ;
Kong, Hanqing ;
Guo, Qiang ;
Wu, Tong ;
Wen, Xin ;
Zhang, Lei ;
Tian, Jiawei .
ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2021, 17 (05) :E176-E184
[49]   Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer [J].
Zeng, Qiao ;
Xiong, Fei ;
Liu, Lan ;
Zhong, Linhua ;
Cai, Fengqin ;
Zeng, Xianjun .
ACADEMIC RADIOLOGY, 2023, 30 :S38-S49
[50]   Molecular subtypes classification of breast cancer in DCE-MRI using deep features [J].
Hasan, Ali M. ;
Al-Waely, Noor K. N. ;
Aljobouri, Hadeel K. ;
Jalab, Hamid A. ;
Ibrahim, Rabha W. ;
Meziane, Farid .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236