Classical spin spirals in frustrated magnets from free-fermion band topology

被引:25
作者
Attig, Jan [1 ]
Trebst, Simon [1 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
关键词
HUBBARD-MODEL; GROUND-STATE; ORDER; DISORDER; LIQUID;
D O I
10.1103/PhysRevB.96.085145
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The formation of coplanar spin spirals is a common motif in the magnetic ordering of many frustrated magnets. For classical antiferromagnets, geometric frustration can lead to a massively degenerate ground state manifold of spirals whose propagation vectors can be described, depending on the lattice geometry, by points (triangular), lines (fcc), surfaces (frustrated diamond), or completely flat bands (pyrochlore). Here we demonstrate an exact mathematical correspondence of these spiral manifolds of classical antiferromagnets with the Fermi surfaces of free-fermion band structures. We provide an explicit lattice construction relating the frustrated spin model to a corresponding free-fermion tight-binding model. Examples of this correspondence relate the 120 degrees order of the triangular lattice antiferromagnet to the Dirac nodal structure of the honeycomb tight-binding model or the spiral line manifold of the fcc antiferromagnet to the Dirac nodal line of the diamond tight-binding model. We discuss implications of topological band structures in the fermionic system for the corresponding classical spin system.
引用
收藏
页数:15
相关论文
共 60 条
[1]   Boundary conditions for Dirac fermions on a terminated honeycomb lattice [J].
Akhmerov, A. R. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW B, 2008, 77 (08)
[2]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[3]   Topological tight-binding models from nontrivial square roots [J].
Arkinstall, J. ;
Teimourpour, M. H. ;
Feng, L. ;
El-Ganainy, R. ;
Schomerus, H. .
PHYSICAL REVIEW B, 2017, 95 (16)
[4]  
Armitage N. P., REV MOD PHY IN PRESS
[5]   Spin liquids in frustrated magnets [J].
Balents, Leon .
NATURE, 2010, 464 (7286) :199-208
[6]   Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets [J].
Bergman, Doron ;
Alicea, Jason ;
Gull, Emanuel ;
Trebst, Simon ;
Balents, Leon .
NATURE PHYSICS, 2007, 3 (07) :487-491
[7]   Quantum order by disorder in frustrated diamond lattice antiferromagnets [J].
Bernier, Jean-Sebastien ;
Lawler, Michael J. ;
Kim, Yong Baek .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[8]   Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals [J].
Bradlyn, Barry ;
Cano, Jennifer ;
Wang, Zhijun ;
Vergniory, M. G. ;
Felser, C. ;
Cava, R. J. ;
Bernevig, B. Andrei .
SCIENCE, 2016, 353 (6299)
[9]   Magnetic monopoles in spin ice [J].
Castelnovo, C. ;
Moessner, R. ;
Sondhi, S. L. .
NATURE, 2008, 451 (7174) :42-45
[10]   HIDDEN ORDER IN A FRUSTRATED SYSTEM - PROPERTIES OF THE HEISENBERG KAGOME ANTIFERROMAGNET [J].
CHALKER, JT ;
HOLDSWORTH, PCW ;
SHENDER, EF .
PHYSICAL REVIEW LETTERS, 1992, 68 (06) :855-858