A group theoretical application of SO(4,1) in the de Sitter universe

被引:22
作者
Jamal, Sameerah [1 ,2 ]
机构
[1] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[2] Univ Witwatersrand, Ctr Differential Equat Continuum Mech & Applicat, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
de Sitter universe; Klein-Gordon equation; Killing algebra; Lie point symmetries; KLEIN-GORDON EQUATION; SYMMETRIES;
D O I
10.1007/s10714-017-2253-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The aim of this paper is to utilize some geometric properties of the de Sitter kinematical group to specify the nature of the potential function V(x(i)) intrinsic to the Klein-Gordon equation. For this purpose, in n-dimensional space, the existence of (n-1)-and n-dimensional subalgebras are necessary to establish the functional forms of the potential function and study its invariant solutions. We demonstrate the use of other group features to construct other potentials of interest. The results are schematicaly displayed in tables.
引用
收藏
页数:14
相关论文
共 23 条