STABILITY OF SINGULAR LIMIT CYCLES FOR ABEL EQUATIONS

被引:12
作者
Luis Bravo, Jose [1 ]
Fernandez, Manuel [1 ]
Gasull, Armengol [2 ]
机构
[1] Univ Extremadura, Dept Matemat, Badajoz 06006, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
Abel equation; closed solution; periodic solution; limit cycle; PERIODIC-SOLUTIONS; NUMBER;
D O I
10.3934/dcds.2015.35.1873
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a criterion for determining the stability of singular limit cycles of Abel equations x' = A(t)x(3) + B(t)x(2). This stability controls the possible saddle-node bifurcations of limit cycles. Therefore, studying the Hopf-like bifurcations at x = 0, together with the bifurcations at infinity of a suitable compactification of the equations, we obtain upper bounds of their number of limit cycles. As an illustration of this approach, we prove that the family x(') = at(t - t(A))x(3) + b(t - t(B))x(2), with a,b>0, has at most two positive limit cycles for any t(B), t(A).
引用
收藏
页码:1873 / 1890
页数:18
相关论文
共 22 条
[1]   A new uniqueness criterion for the number of periodic orbits of Abel equations [J].
Alvarez, M. J. ;
Gasull, A. ;
Giacomini, H. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (01) :161-176
[2]   NONAUTONOMOUS EQUATIONS RELATED TO POLYNOMIAL TWO-DIMENSIONAL SYSTEMS [J].
ALWASH, MAM ;
LLOYD, NG .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 105 :129-152
[3]  
Andronov A.A., 1973, Qualitative Theory of Second Order Differential Equations
[4]  
[Anonymous], 1976, Differ. Uravn.
[5]   Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation [J].
Benardete, Diego M. ;
Noonburg, V. W. ;
Pollina, B. .
AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (03) :202-219
[6]   Abel-like differential equations with no periodic solutions [J].
Bravo, J. L. ;
Torregrosa, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :931-942
[7]   LIMIT CYCLES FOR SOME ABEL EQUATIONS HAVING COEFFICIENTS WITHOUT FIXED SIGNS [J].
Bravo, J. L. ;
Fernandez, M. ;
Gasull, A. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (11) :3869-3876
[8]   LIMIT-CYCLES AND ROTATED VECTOR FIELDS [J].
DUFF, GFD .
ANNALS OF MATHEMATICS, 1953, 57 (01) :15-31
[9]   Iterative approximation of limit cycles for a class of Abel equations [J].
Fossas, Enric ;
Olm, Josep M. ;
Sira-Ramirez, Hebertt .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (23) :3159-3164
[10]   LIMIT-CYCLES FOR A CLASS OF ABEL EQUATIONS [J].
GASULL, A ;
LLIBRE, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (05) :1235-1244