Fourierization of the Legendre-Galerkin method and a new space-time spectral method

被引:85
作者
Shen, Jie [1 ]
Wang, Li-Lian
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Nanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637616, Singapore
关键词
Fourier-like basis function; dual-Petrov-Galerkin method; space-time spectral method; error analysis;
D O I
10.1016/j.apnum.2006.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set of Fourier-like basis functions is constructed for Legendre-Galerkin method for non-periodic boundary value problems and a new space-time spectral method is proposed. A complete error analysis is carried out for a linear parabolic equation and numerical results are presented for several typical linear and nonlinear equations. (c) 2006 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:710 / 720
页数:11
相关论文
共 16 条
[1]   SPACE-TIME SPECTRAL ELEMENT METHODS FOR ONE-DIMENSIONAL NONLINEAR ADVECTION-DIFFUSION PROBLEMS [J].
BARYOSEPH, P ;
MOSES, E ;
ZRAHIA, U ;
YARIN, AL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 119 (01) :62-74
[2]  
Boyd JP., 2001, CHEBYSHEV FOURIER SP
[3]  
CANUTO C., 1987, Spectral Methods in Fluid Dynamics
[4]  
DUBOIS T., 1999, DYNAMIC MULTILEVEL M
[5]   A fast spectral algorithm for nonlinear wave equations with linear dispersion [J].
Fornberg, B ;
Driscoll, TA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 155 (02) :456-467
[6]  
Gottlieb D., 1977, NUMERICAL ANAL SPECT
[7]   Optimal spectral-Galerkin methods using generalized Jacobi polynomials [J].
Guo, Ben-Yu ;
Shen, Jie ;
Wang, Li-Lian .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 27 (1-3) :305-322
[8]   Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces [J].
Guo, BY ;
Wang, LL .
JOURNAL OF APPROXIMATION THEORY, 2004, 128 (01) :1-41
[9]  
GUO BY, 1998, SPECTRAL METHODS THE
[10]   Fourth-order time-stepping for stiff PDEs [J].
Kassam, AK ;
Trefethen, LN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (04) :1214-1233