Size-Dependent Magnetic Heating of MnFe2O4 Nanoparticles

被引:13
作者
Nguyen, L. H. [1 ,2 ]
Phuc, N. X. [3 ]
Manh, D. H. [4 ]
Nam, N. H. [4 ]
Truong, N. X. [4 ]
Quynh, N. V. [5 ]
Phong, P. T. [6 ]
Nam, P. H. [4 ,7 ]
机构
[1] Ton Duc Thang Univ, Adv Inst Mat Sci, Lab Magnetism & Magnet Mat, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Appl Sci, Ho Chi Minh City, Vietnam
[3] Duy Tan Univ, Inst Res & Dev, K7-25 Quang Trung St, Da Nang City, Vietnam
[4] Vietnam Acad Sci & Technol, Inst Mat Sci, 18 Hoang Quoc Viet St, Ha Noi City, Vietnam
[5] Univ Sci & Technol Hanoi USTH, Vietnam Acad Sci & Technol, 18 Hoang Quoc Viet St, Hanoi, Vietnam
[6] Univ Management & Technol, Ho Chi Minh City, Vietnam
[7] Grad Univ Sci & Technol, Vietnam Acad Sci & Technol, 18 Hoang Quoc Viet St, Hanoi, Vietnam
关键词
Specific absorption rate; MnFe2O4; magnetic inductive heating; effective magnetic anisotropy; LOSS POWER; HYPERTHERMIA; EFFICIENCY; FIELD; RELAXATION; FLUIDS;
D O I
10.1007/s11664-021-09056-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnetic nanoparticles with an optimal size seek high inductive heating performance, which plays an important role in biomedical applications. This work reports the critical size of MnFe2O4 particles at which the specific absorption rate (SAR) reaches its maximum value. MnFe2O4 nanoparticles with different sizes from similar to 11 nm to similar to 70 nm were synthesized using the hydrothermal method. Under an applied field amplitude of 80 Oe and frequency of 236 kHz, the 18-nm MnFe2O4 nanoparticles exhibited the highest SAR of 65.52 W/g. The effective magnetic anisotropy, as a function of particle size, was used to calculate the theoretical value of SAR in the framework of the linear response theory. Experimental results agreed well with the theoretical calculations in the superparamagnetic regime. This study may serve as a basis for the accurate prediction of the optimal size of magnetic nanoparticles in inductive heating.
引用
收藏
页码:5318 / 5326
页数:9
相关论文
共 54 条
[1]   THE EFFECT OF HEATING ON THE MAGNETIC-PROPERTIES OF FE3O4 FINE PARTICLES [J].
ABUALJARAYESH, I ;
ALBAYRAKDAR, A ;
MAHMOOD, SH .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1993, 123 (03) :267-272
[2]   Structural and transport properties of nanocrystalline MnFe2O4 synthesized by co-precipitation method [J].
Akhtar, M. J. ;
Younas, M. .
SOLID STATE SCIENCES, 2012, 14 (10) :1536-1542
[3]   Superparamagnetic relaxation evidences large surface contribution for the magnetic anisotropy of MnFe204 nanoparticles of ferrofluids [J].
Alves, C. R. ;
Aquino, Renata ;
Depeyrot, Jerome ;
Tourinho, Francisco A. ;
Dubois, Emmanuelle ;
Perzynski, Regine .
JOURNAL OF MATERIALS SCIENCE, 2007, 42 (07) :2297-2303
[4]  
[Anonymous], 1995, Handbook of Magnetic Materials, DOI [10.1016/S1567-2719(05)80032-0, DOI 10.1016/S1567-2719(05)80032-0]
[5]   Magnetic properties of MnFe2O4 nano-aggregates dispersed in paraffin wax [J].
Aslibeiki, B. ;
Kameli, P. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 385 :308-312
[6]  
Buschow K. H. J., 2003, HDB MAGNETIC MAT, V8
[7]   Size dependent heating ability of CoFe2O4 nanoparticles in AC magnetic field for magnetic nanofluid hyperthermia [J].
Celik, Ozer ;
Can, Musa Mutlu ;
Firat, Tezer .
JOURNAL OF NANOPARTICLE RESEARCH, 2014, 16 (03)
[8]   Magnetic hyperthermia application of MnFe2O4 nanostructures processed through solvents with the varying boiling point [J].
Chandunika, R. K. ;
Vijayaraghavan, R. ;
Sahu, Niroj Kumar .
MATERIALS RESEARCH EXPRESS, 2020, 7 (06)
[9]   Size dependent magnetic properties and cation inversion in chemically synthesized MnFe2O4 nanoparticles [J].
Chinnasamy, C. N. ;
Yang, Aria ;
Yoon, S. D. ;
Hsu, Kailin ;
Shultz, M. D. ;
Carpenter, E. E. ;
Mukerjee, S. ;
Vittoria, C. ;
Harris, V. G. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (09)
[10]   Enhanced magnetic hyperthermia of CoFe2O4 and MnFe2O4 nanoparticles [J].
Cruz, M. M. ;
Ferreira, L. P. ;
Ramos, J. ;
Mendo, S. G. ;
Alves, A. F. ;
Godinho, M. ;
Carvalho, M. D. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 703 :370-380