Intertwining operator and integrable hierarchies from topological strings

被引:4
作者
Bourgine, Jean-Emile [1 ,2 ]
机构
[1] Sogang Univ, Ctr Quantum Spacetime CQUeST, Seoul 121742, South Korea
[2] Quantum Univ Ctr QUC, Korea Inst Adv Studies KIAS, 85 Hoegiro, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Integrable Hierarchies; Topological Strings; TRANSFORMATION GROUPS; QUANTUM; SYMMETRY;
D O I
10.1007/JHEP05(2021)216
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In [1], Nakatsu and Takasaki have shown that the melting crystal model behind the topological strings vertex provides a tau-function of the KP hierarchy after an appropriate time deformation. We revisit their derivation with a focus on the underlying quantum W1+infinity symmetry. Specifically, we point out the role played by automorphisms and the connection with the intertwiner - or vertex operator - of the algebra. This algebraic perspective allows us to extend part of their derivation to the refined melting crystal model, lifting the algebra to the quantum toroidal algebra of gl(1) (also called Ding-Iohara-Miki algebra). In this way, we take a first step toward the definition of deformed hierarchies associated to A-model refined topological strings.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Toda 3-point functions from topological strings
    Vladimir Mitev
    Elli Pomoni
    Journal of High Energy Physics, 2015
  • [32] Integrable hierarchies associated to infinite families of Frobenius manifolds
    Basalaev, Alexey
    Dunin-Barkowski, Petr
    Natanzon, Sergey
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (11)
  • [33] Moduli spaces of higher spin curves and integrable hierarchies
    Jarvis, TJ
    Kimura, T
    Vaintrob, A
    COMPOSITIO MATHEMATICA, 2001, 126 (02) : 157 - 212
  • [34] Toda 3-point functions from topological strings II
    Isachenkov, Mikhail
    Mitev, Vladimir
    Pomoni, Elli
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08):
  • [35] Checks of integrality properties in topological strings
    Mironov, A.
    Morozov, A.
    Morozov, An.
    Ramadevi, P.
    Singh, Vivek Kumar
    Sleptsov, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (08):
  • [36] Quantum geometry of refined topological strings
    Aganagic, Mina
    Cheng, Miranda C. N.
    Dijkgraaf, Robbert
    Krefl, Daniel
    Vafa, Cumrun
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (11):
  • [37] S-duality and topological strings
    Nekrasov, N
    Ooguri, H
    Vafa, C
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10): : 161 - 171
  • [38] Topological derivatives for networks of elastic strings
    Leugering, G.
    Sokolowski, J.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (12): : 926 - 943
  • [39] Quantum geometry of refined topological strings
    Mina Aganagic
    Miranda C. N. Cheng
    Robbert Dijkgraaf
    Daniel Krefl
    Cumrun Vafa
    Journal of High Energy Physics, 2012
  • [40] Topological strings and quantum spectral problems
    Huang, Min-Xin
    Wang, Xian-Fu
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09):