Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral

被引:106
作者
Remiddi, Ettore [1 ,2 ]
Tancredi, Lorenzo [3 ]
机构
[1] Univ Bologna, DIFA, I-40126 Bologna, Italy
[2] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy
[3] KIT, Inst Theoret Particle Phys, D-76128 Karlsruhe, Germany
关键词
MASTER INTEGRALS; IDENTITIES; DIAGRAM; GRAPH;
D O I
10.1016/j.nuclphysb.2016.04.013
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
It is shown that the study of the imaginary part and of the corresponding dispersion relations of Feynman graph amplitudes within the differential equations method can provide a powerful tool for the solution of the equations, especially in the massive case. The main features of the approach are illustrated by discussing the simple cases of the 1-loop self-mass and of a particular vertex amplitude, and then used for the evaluation of the two-loop massive sunrise and the QED kite graph (the problem studied by Sabry in 1962), up to first order in the (d - 4) expansion. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:400 / 444
页数:45
相关论文
共 38 条
[1]  
Ablinger J., ARXIV150908324
[2]   Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms [J].
Ablinger, Jakob ;
Bluemlein, Johannes ;
Schneider, Carsten .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
[3]  
Adams L., ARXIV150403255
[4]  
Adams L., ARXIV151205630
[5]   The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
[6]   The two-loop sunrise graph with arbitrary masses [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
[7]  
[Anonymous], ARXIVMATHPH0010025
[8]  
[Anonymous], ARXIV160108181
[9]  
[Anonymous], ARXIVMATH0103059
[10]   Magnus and Dyson series for Master Integrals [J].
Argeri, Mario ;
Di Vita, Stefano ;
Mastrolia, Pierpaolo ;
Mirabella, Edoardo ;
Schlenk, Johannes ;
Schubert, Ulrich ;
Tancredi, Lorenzo .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03)