Quantifying multipartite entanglement

被引:0
作者
Wei, TC [1 ]
Altepeter, JB [1 ]
Das, D [1 ]
Ericsson, M [1 ]
Goldbart, PM [1 ]
Mukhopadyay, S [1 ]
Munro, WJ [1 ]
Vishveshwara, S [1 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
来源
QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING | 2004年 / 734卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A natural way of quantifying the degree of entanglement for a pure quantum state is to compare how far this state is from the set of all unentangled pure states. This geometric measure of entanglement is explored for bipartite and multipartite pure and mixed states. It is determined analytically for arbitrary two-qubit mixed states and for generalized Werner and isotropic states. It is also applied to certain multipartite mixed states. including two multipartite bound entangeled states discovered by Smolin and Dur. Moreover, the geometric measure of entanglement is applied to the ground state of the Ising model in a transverse magnetic field. From this model the entanglement is shown to exhibit singular behavior at the quantum critical point.
引用
收藏
页码:241 / 244
页数:4
相关论文
共 19 条
[1]   Monotones and invariants for multi-particle quantum states [J].
Barnum, H ;
Linden, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6787-6805
[2]   Multipartite bound entangled states that violate Bell's inequality -: art. no. 230402 [J].
Dür, W .
PHYSICAL REVIEW LETTERS, 2001, 87 (23) :230402-1
[3]  
EISERT J, QUANTPH0407135
[4]  
Horodecki M, 2001, QUANTUM INF COMPUT, V1, P3
[5]   Multipartite bound entanglement and three-setting Bell inequalities [J].
Kaszlikowski, D ;
Kwek, LC ;
Chen, JL ;
Oh, CH .
PHYSICAL REVIEW A, 2002, 66 (05) :5
[6]   Preserving entanglement under perturbation and sandwiching all separable states [J].
Lockhart, RB ;
Steiner, MJ .
PHYSICAL REVIEW A, 2002, 65 (02) :1-4
[7]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[8]   Functional Bell inequalities can serve as a stronger entanglement witness than conventional Bell inequalities [J].
SenDe, A ;
Sen, U ;
Zukowski, M .
PHYSICAL REVIEW A, 2002, 66 (06) :4
[9]   DEGREE OF ENTANGLEMENT [J].
SHIMONY, A .
FUNDAMENTAL PROBLEMS IN QUANTUM THEORY: A CONFERENCE HELD IN HONOR OF PROFESSOR JOHN A. WHEELER, 1995, 755 :675-679
[10]   Four-party unlockable bound entangled state [J].
Smolin, JA .
PHYSICAL REVIEW A, 2001, 63 (03) :1-4