Learning with multiple pairwise kernels for drug bioactivity prediction

被引:55
作者
Cichonska, Anna [1 ,2 ]
Pahikkala, Tapio [3 ]
Szedmak, Sandor [1 ]
Julkunen, Heli [1 ]
Airola, Antti [3 ]
Heinonen, Markus [1 ]
Aittokallio, Tero [1 ,2 ,4 ]
Rousu, Juho [1 ]
机构
[1] Aalto Univ, Helsinki Inst Informat Technol HIIT, Dept Comp Sci, Espoo, Finland
[2] Univ Helsinki, Inst Mol Med Finland FIMM, Helsinki, Finland
[3] Univ Turku, Dept Informat Technol, Turku, Finland
[4] Univ Turku, Dept Math & Stat, Turku, Finland
基金
芬兰科学院;
关键词
METABOLITE IDENTIFICATION; DATA INTEGRATION; DISCOVERY;
D O I
10.1093/bioinformatics/bty277
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Many inference problems in bioinformatics, including drug bioactivity prediction, can be formulated as pairwise learning problems, in which one is interested in making predictions for pairs of objects, e.g. drugs and their targets. Kernel-based approaches have emerged as powerful tools for solving problems of that kind, and especially multiple kernel learning (MKL) offers promising benefits as it enables integrating various types of complex biomedical information sources in the form of kernels, along with learning their importance for the prediction task. However, the immense size of pairwise kernel spaces remains a major bottleneck, making the existing MKL algorithms computationally infeasible even for small number of input pairs. Results: We introduce pairwiseMKL, the first method for time- and memory-efficient learning with multiple pairwise kernels. pairwiseMKL first determines the mixture weights of the input pairwise kernels, and then learns the pairwise prediction function. Both steps are performed efficiently without explicit computation of the massive pairwise matrices, therefore making the method applicable to solving large pairwise learning problems. We demonstrate the performance of pairwiseMKL in two related tasks of quantitative drug bioactivity prediction using up to 167 995 bioactivity measurements and 3120 pairwise kernels: (i) prediction of anticancer efficacy of drug compounds across a large panel of cancer cell lines; and (ii) prediction of target profiles of anticancer compounds across their kinome-wide target spaces. We show that pairwiseMKL provides accurate predictions using sparse solutions in terms of selected kernels, and therefore it automatically identifies also data sources relevant for the prediction problem.
引用
收藏
页码:509 / 518
页数:10
相关论文
共 35 条
[1]  
Airola A, 2017, IEEE T NEURAL NETWOR, P1
[2]  
Ali M, 2017, BIOINFORMATICS, V1, P10
[3]   Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization [J].
Ammad-ud-din, Muhammad ;
Khan, Suleiman A. ;
Malani, Disha ;
Murumagi, Astrid ;
Kallioniemi, Olli ;
Aittokallio, Tero ;
Kaski, Samuel .
BIOINFORMATICS, 2016, 32 (17) :455-463
[4]  
[Anonymous], 2004, KERNEL METHODS PATTE
[5]   Computational models for predicting drug responses in cancer research [J].
Azuaje, Francisco .
BRIEFINGS IN BIOINFORMATICS, 2017, 18 (05) :820-829
[6]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[7]   Fast metabolite identification with Input Output Kernel Regression [J].
Brouard, Celine ;
Shen, Huibin ;
Duehrkop, Kai ;
d'Alche-Buc, Florence ;
Boecker, Sebastian ;
Rousu, Juho .
BIOINFORMATICS, 2016, 32 (12) :28-36
[8]   Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties [J].
Cheng, Feixiong ;
Zhao, Zhongming .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2014, 21 (E2) :E278-E286
[9]   Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference [J].
Cheng, Feixiong ;
Liu, Chuang ;
Jiang, Jing ;
Lu, Weiqiang ;
Li, Weihua ;
Liu, Guixia ;
Zhou, Weixing ;
Huang, Jin ;
Tang, Yun .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (05)
[10]   Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors [J].
Cichonska, Anna ;
Ravikumar, Balaguru ;
Parri, Elina ;
Timonen, Sanna ;
Pahikkala, Tapio ;
Airola, Antti ;
Wennerberg, Krister ;
Rousu, Juho ;
Aittokallio, Tero .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (08)