An Adversarial Learning and Canonical Correlation Analysis Based Cross-Modal Retrieval Model

被引:0
作者
Thi-Hong Vuong [1 ]
Thanh-Huyen Pham [1 ,2 ]
Tri-Thanh Nguyen [1 ]
Quang-Thuy Ha [1 ]
机构
[1] UET, VNU, Hanoi VNU, 144 Xuan Thuy, Hanoi, Vietnam
[2] Ha Long Univ, Quang Ninh, Vietnam
来源
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2019, PT I | 2019年 / 11431卷
关键词
Cross-modal retrieval; Adversarial learning; Canonical correlation analysis;
D O I
10.1007/978-3-030-14799-0_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The key of cross-modal retrieval approaches is to find a maximally correlated subspace among multiple datasets. This paper introduces a novel Adversarial Learning and Canonical Correlation Analysis based Cross-Modal Retrieval (ALCCA-CMR) model. For each modality, the ALCCA phase finds an effective common subspace and calculates the similarity by canonical correlation analysis embedding for cross-modal retrieval. We demonstrate an application of ALCCA-CMR model implemented for the dataset of two modalities. Experimental results on real music data show the efficacy of the proposed method in comparison with other existing ones.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 22 条
  • [1] Andrienko G., 2013, Introduction, P1
  • [2] [Anonymous], ARXIV171108976
  • [3] [Anonymous], 2014, AAAI
  • [4] Photo classification by integrating image content and camera metadata
    Boutell, M
    Luo, JB
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 901 - 904
  • [5] Chaudhuri Kamalika, 2009, P 26 ANN INT C MACH, P129
  • [6] De Bie T., 2003, P INT S IND COMP AN, P785
  • [7] Deep correspondence restricted Boltzmann machine for cross-modal retrieval
    Feng, Fangxiang
    Li, Ruifan
    Wang, Xiaojie
    [J]. NEUROCOMPUTING, 2015, 154 : 50 - 60
  • [8] Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
  • [9] Hu X, 2009, 10 INT SOC MUS INF R, P411
  • [10] Le Q., 2014, ICML, P1188