A RESCALED LOCALIZED RADIAL BASIS FUNCTION INTERPOLATION ON NON-CARTESIAN AND NONCONFORMING GRIDS

被引:40
作者
Deparis, Simone [1 ]
Forti, Davide [1 ]
Quarteroni, Alfio
机构
[1] Ecole Polytech Fed Lausanne, MATHICSE Math Inst Computat Sci & Engn, CMCS Modelling & Sci Comp, CH-1015 Lausanne, Switzerland
关键词
compactly supported radial basis functions; interpolation; nonconforming meshes; parallel algorithms;
D O I
10.1137/130947179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a rescaled localized radial basis function (RL-RBF) interpolation method, based on the use of compactly supported radial basis functions. Starting from the classical RBF interpolation technique, we introduce a rescaling that allows for exact interpolation of constant fields between nonconforming meshes without the use of an extra polynomial term. We also present two-dimensional and three-dimensional numerical examples on arbitrary finite element meshes to show that the RL-RBF interpolation leads to accurate results, fast evaluation, and easy parallelization of the algorithm. All the computations are carried out using the open source finite element library LifeV.
引用
收藏
页码:A2745 / A2762
页数:18
相关论文
共 17 条
[11]   Radial basis functions for inter-grid interpolation and mesh motion in FSI problems [J].
Lombardi, M. ;
Parolini, N. ;
Quarteroni, A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 256 :117-131
[12]   Model reduction techniques for fast blood flow simulation in parametrized geometries [J].
Manzoni, Andrea ;
Quarteroni, Alfio ;
Rozza, Gianluigi .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2012, 28 (6-7) :604-625
[13]   An algorithm for selecting a good value for the parameter c in radial basis function interpolation [J].
Rippa, S .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (2-3) :193-210
[14]   A point interpolation meshless method based on radial basis functions [J].
Wang, JG ;
Liu, GR .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 54 (11) :1623-1648
[15]  
Wendland H., 1995, Advances in Computational Mathematics, V4, P389, DOI 10.1007/BF02123482
[16]   Meshless Galerkin methods using radial basis functions [J].
Wendland, H .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1521-1531
[17]  
Wendland H., 2002, Approximation Theory, X: Wavelets, Splines, and Applications, P473