Spreading speeds and traveling waves for abstract monostable evolution systems

被引:232
作者
Liang, Xing [2 ]
Zhao, Xiao-Qiang [1 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Monotone semiflows; Spreading speeds; Traveling waves; Evolution systems; Periodic habitat; FRONT PROPAGATION; DIFFUSION; BEHAVIOR; GROWTH; MODELS;
D O I
10.1016/j.jfa.2010.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the development of the theory of spreading speeds and traveling waves for abstract monostable evolution systems with spatial structure. Under appropriate assumptions, we show that the spreading speeds coincide with the minimal wave speeds for monotone traveling waves in the positive and negative directions. Then we use this theory to study the spatial dynamics of a parabolic equation in a periodic cylinder with the Dirichlet boundary condition, a reaction diffusion model with a quiescent stage, a porous medium equation in a tube, and a lattice system in a periodic habitat. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:857 / 903
页数:47
相关论文
共 35 条
[1]  
[Anonymous], 1937, Bull. Univ. Mosc. Ser. Int. A, DOI DOI 10.1016/B978-0-08-092523-3.50014-9
[2]  
[Anonymous], 1976, Nonlinear Operators and Differential Equations in Banach Spaces
[3]  
Aronson D. G., 1975, Lecture Notes in Math., V446, P5, DOI [10.1007/BFb0070595, DOI 10.1007/BFB0070595]
[4]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[5]   Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1101-1146
[6]  
Berestycki H, 2005, J EUR MATH SOC, V7, P173
[7]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[8]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[9]  
FREIDLIN MI, 1984, ADV PROB REL TOPICS, V7
[10]  
G~artner J., 1979, Sov. Math., Dokl., V20, P1282