Potential stem cell therapy and application in neurotrauma

被引:18
作者
Brodhun, M
Bauer, R
Patt, S
机构
[1] Univ Jena, Inst Pathol, D-07740 Jena, Germany
[2] Univ Jena, Inst Pathophysiol & Pathobiochem, D-07740 Jena, Germany
关键词
stem cells; neurotrauma; spinal cord injury;
D O I
10.1016/j.etp.2004.04.004
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Traumatic brain injury results from a sudden and external physical insult to the head, which is often accompanied by motor and cognitive impairment. Neurotrauma is characterized not only by focal abnormalities, but rather by multifocal, or even global structural and functional disturbances of the brain network. The impact initially causes necrotic cell death in the underlying tissue, followed by apoptotic cell death in the surrounding tissue due to multiple subsequent events, such as ischemia. excitotoxicity and altered gene expression. These pathological conditions are associated with high morbidity and mortality. Despite the high medical and economical relevance of neurotrauma there are currently no sufficient treatments. Supplementary therapeutic strategies have to be established. Many types of stem cells have the ability to engraft diffusely and become integral members of structures throughout the host CNS. Intrinsic factors appear to derive spontaneously from stem cells and seem to be capable of neuroprotective and/or neuroregenerative functions. Furthermore stem cells can be readily engineered to express specific genes. Such observations suggest that stem cells might participate in reconstructing the molecular and cellular milieu of traumatized brains. In this paper, the state of stem cell research is reviewed and its possible application in neurotrauma will be discussed. (C) 2004 Elsevier GmbH. All rights reserved.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 103 条
[1]   Neurodegeneration: a failure of neuroregeneration? [J].
Armstrong, RJE ;
Barker, RA .
LANCET, 2001, 358 (9288) :1174-1176
[2]   Neurobiology -: Self-repair in the brain [J].
Björklund, A ;
Lindvall, O .
NATURE, 2000, 405 (6789) :892-895
[3]   Cell replacement therapies for central nervous system disorders [J].
Björklund, A ;
Lindvall, O .
NATURE NEUROSCIENCE, 2000, 3 (06) :537-544
[4]   The evolving concept of a stem cell: Entity or function? [J].
Blau, HM ;
Brazelton, TR ;
Weimann, JM .
CELL, 2001, 105 (07) :829-841
[5]  
Bonilla S, 2001, INT J DEV BIOL, V45, pS67
[6]  
Brodhun M, 2001, ACTA NEUROPATHOL, V101, P424
[7]   In vitro-generated neural precursors participate in mammalian brain development [J].
Brüstle, O ;
Spiro, AC ;
Karram, K ;
Choudhary, K ;
Okabe, S ;
McKay, RDG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14809-14814
[8]   Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus [J].
Cameron, HA ;
McKay, RDG .
JOURNAL OF COMPARATIVE NEUROLOGY, 2001, 435 (04) :406-417
[9]   Stem cell repair of central nervous system injury [J].
Cao, QL ;
Benton, RL ;
Whittemore, SR .
JOURNAL OF NEUROSCIENCE RESEARCH, 2002, 68 (05) :501-510
[10]  
Castro RF, 2003, SCIENCE, V299