Comparison of unitary transforms

被引:11
作者
Andersson, E [1 ]
Jex, I
Barnett, SM
机构
[1] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CR-11519 Prague, Czech Republic
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 09期
关键词
D O I
10.1088/0305-4470/36/9/310
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyse the problem of comparing unitary transformations. The task is to decide, with minimal resources and maximal reliability, whether two given unitary transformations are identical or different. It is possible to make such. comparisons without obtaining any information about the individual transformations. Different comparison strategies are presented and compared with respect to their efficiency. With an interferometric setup, it is possible to compare two unitary transforms using only one test particle. Another strategy makes use of a two-particle singlet state. This strategy is more efficient than using a non-entangled two-particle test state, thus demonstrating the benefit of entanglement. Generalizations to higher.-dimensional transforms and to more than two transformations are made.
引用
收藏
页码:2325 / 2338
页数:14
相关论文
共 21 条
[1]   Statistical distinguishability between unitary operations -: art. no. 177901 [J].
Acín, A .
PHYSICAL REVIEW LETTERS, 2001, 87 (17)
[2]   Optimal estimation of quantum dynamics -: art. no. 050302 [J].
Acín, A ;
Jané, E ;
Vidal, G .
PHYSICAL REVIEW A, 2001, 64 (05) :4
[3]   Measuring energy, estimating Hamiltonians, and the time-energy uncertainty relation [J].
Aharonov, Y ;
Massar, S ;
Popescu, S .
PHYSICAL REVIEW A, 2002, 66 (05) :11
[4]  
[Anonymous], 1993, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics
[5]   Comparison of two unknown pure quantum states [J].
Barnett, SM ;
Chefles, A ;
Jex, I .
PHYSICS LETTERS A, 2003, 307 (04) :189-195
[6]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[7]   Channel estimation with noisy entanglement [J].
Bschorr, TC ;
Fischer, DG ;
Freyberger, M .
PHYSICS LETTERS A, 2001, 292 (1-2) :15-22
[8]   Quantum information and precision measurement [J].
Childs, Andrew M. ;
Preskill, John ;
Reness, Joseph .
Journal of Modern Optics, 2000, 47 (2-3 SPEC.) :155-176
[9]  
CIRONE MA, 2001, QUANTPH0108037
[10]  
CORNWELL JF, 1984, GROUP THEORY PHYSICS, V1, P62