On fractional bending of beams

被引:34
作者
Lazopoulos, K. A. [1 ]
Lazopoulos, A. K. [2 ]
机构
[1] 14 Theatrou Str, Rafina 19009, Greece
[2] Hellen Army Acad, Dept Math Sci, Vari 16673, Greece
关键词
Fractional tangent space; Fractional differential geometry; Curvature vector; Fractional bending; Euler-Bernoulli bending principle; A cantilever beam; CALCULUS;
D O I
10.1007/s00419-015-1083-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Clarifying the geometry of the fractional tangent space of a curve, fractional differential geometry of curves has already been revisited, Lazopoulos and Lazopoulos (2015), defining also the curvature vector. Fractional bending of a beam is introduced, applying Euler-Bernoulli bending principle. The proposed theory is implemented to the bending deformation of a cantilever beam under continuously distributed loading.
引用
收藏
页码:1133 / 1145
页数:13
相关论文
共 19 条
[11]  
Lazopoulos K.A., 2015, ADV THEOR MATH UNPUB
[12]  
Leibniz GW., 1849, LEIBNITZEN MATH SCHR, V2, P301
[13]  
Liouville J., 1832, Journal de lcole Polytechnique, Paris, V13, P71
[14]  
Porteous IR., 1994, Geometric differentiation-for the intelligence of curves and surfaces
[15]  
Riemann B., 1876, GESAMMELTE WERKE, V62
[16]  
Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications
[17]   Fractional vector calculus and fractional Maxwell's equations [J].
Tarasov, Vasily E. .
ANNALS OF PHYSICS, 2008, 323 (11) :2756-2778
[18]  
Tarasov VE, 2011, NONLINEAR PHYS SCI, P1
[19]  
Truesdell C., 1977, A first course in rational continuum mechanics, V1