On fractional bending of beams

被引:34
作者
Lazopoulos, K. A. [1 ]
Lazopoulos, A. K. [2 ]
机构
[1] 14 Theatrou Str, Rafina 19009, Greece
[2] Hellen Army Acad, Dept Math Sci, Vari 16673, Greece
关键词
Fractional tangent space; Fractional differential geometry; Curvature vector; Fractional bending; Euler-Bernoulli bending principle; A cantilever beam; CALCULUS;
D O I
10.1007/s00419-015-1083-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Clarifying the geometry of the fractional tangent space of a curve, fractional differential geometry of curves has already been revisited, Lazopoulos and Lazopoulos (2015), defining also the curvature vector. Fractional bending of a beam is introduced, applying Euler-Bernoulli bending principle. The proposed theory is implemented to the bending deformation of a cantilever beam under continuously distributed loading.
引用
收藏
页码:1133 / 1145
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   Generalized wave equation in nonlocal elasticity [J].
Atanackovic, T. M. ;
Stankovic, B. .
ACTA MECHANICA, 2009, 208 (1-2) :1-10
[5]   The differentiability in the fractional calculus [J].
Ben Adda, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (08) :5423-5428
[6]   DEFINITION OF PHYSICALLY CONSISTENT DAMPING LAWS WITH FRACTIONAL DERIVATIVES [J].
BEYER, H ;
KEMPFLE, S .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (08) :623-635
[7]   Geometry of fractional spaces [J].
Calcagni, Gianluca .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (02) :549-644
[8]   A fractional calculus approach to nonlocal elasticity [J].
Carpinteri, A. ;
Cornetti, P. ;
Sapora, A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :193-204
[9]   RIEMANN-CHRISTOFFEL TENSOR IN DIFFERENTIAL GEOMETRY OF FRACTIONAL ORDER APPLICATION TO FRACTAL SPACE-TIME [J].
Jumarie, Guy .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2013, 21 (01)
[10]   Non-local continuum mechanics and fractional calculus [J].
Lazopoulos, K. A. .
MECHANICS RESEARCH COMMUNICATIONS, 2006, 33 (06) :753-757