Matching whole genomes to rare genetic disorders: Identification of potential causative variants using phenotype-weighted knowledge in the CAGI SickKids5 clinical genomes challenge

被引:3
作者
Pal, Lipika R. [1 ]
Kundu, Kunal [1 ,2 ]
Yin, Yizhou [1 ]
Moult, John [1 ,3 ]
机构
[1] Univ Maryland, Inst Biosci & Biotechnol Res, 9600 Gudelsky Dr, Rockville, MD 20850 USA
[2] Univ Maryland, Biol Sci Grad Program, Computat Biol Bioinformat & Genom, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD 20742 USA
关键词
CAGI5; connective-tissue disorder; diagnostic variants; eye disorder; Human Phenotype Ontology (HPO); neurological diseases; whole-genome sequencing data; PERSONAL GENOMES; DISEASE; PATHOGENICITY; PREDICTION; FRAMEWORK; ANNOTATIONS; DATABASE; BIOLOGY; UPDATE; EXOME;
D O I
10.1002/humu.23933
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Precise identification of causative variants from whole-genome sequencing data, including both coding and noncoding variants, is challenging. The Critical Assessment of Genome Interpretation 5 SickKids clinical genome challenge provided an opportunity to assess our ability to extract such information. Participants in the challenge were required to match each of the 24 whole-genome sequences to the correct phenotypic profile and to identify the disease class of each genome. These are all rare disease cases that have resisted genetic diagnosis in a state-of-the-art pipeline. The patients have a range of eye, neurological, and connective-tissue disorders. We used a gene-centric approach to address this problem, assigning each gene a multiphenotype-matching score. Mutations in the top-scoring genes for each phenotype profile were ranked on a 6-point scale of pathogenicity probability, resulting in an approximately equal number of top-ranked coding and noncoding candidate variants overall. We were able to assign the correct disease class for 12 cases and the correct genome to a clinical profile for five cases. The challenge assessor found genes in three of these five cases as likely appropriate. In the postsubmission phase, after careful screening of the genes in the correct genome, we identified additional potential diagnostic variants, a high proportion of which are noncoding.
引用
收藏
页码:347 / 362
页数:16
相关论文
共 71 条
  • [1] A method and server for predicting damaging missense mutations
    Adzhubei, Ivan A.
    Schmidt, Steffen
    Peshkin, Leonid
    Ramensky, Vasily E.
    Gerasimova, Anna
    Bork, Peer
    Kondrashov, Alexey S.
    Sunyaev, Shamil R.
    [J]. NATURE METHODS, 2010, 7 (04) : 248 - 249
  • [2] A global reference for human genetic variation
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Wang, Jun
    Wilson, Richard K.
    Boerwinkle, Eric
    Doddapaneni, Harsha
    Han, Yi
    Korchina, Viktoriya
    Kovar, Christie
    Lee, Sandra
    Muzny, Donna
    Reid, Jeffrey G.
    Zhu, Yiming
    Chang, Yuqi
    Feng, Qiang
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Lan, Tianming
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Liu, Shengmao
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Tang, Meifang
    Wang, Bo
    [J]. NATURE, 2015, 526 (7571) : 68 - +
  • [3] A phenotype centric benchmark of variant prioritisation tools
    Anderson, Denise
    Lassmann, Timo
    [J]. NPJ GENOMIC MEDICINE, 2018, 3
  • [4] Gene Ontology Consortium: going forward
    Blake, J. A.
    Christie, K. R.
    Dolan, M. E.
    Drabkin, H. J.
    Hill, D. P.
    Ni, L.
    Sitnikov, D.
    Burgess, S.
    Buza, T.
    Gresham, C.
    McCarthy, F.
    Pillai, L.
    Wang, H.
    Carbon, S.
    Dietze, H.
    Lewis, S. E.
    Mungall, C. J.
    Munoz-Torres, M. C.
    Feuermann, M.
    Gaudet, P.
    Basu, S.
    Chisholm, R. L.
    Dodson, R. J.
    Fey, P.
    Mi, H.
    Thomas, P. D.
    Muruganujan, A.
    Poudel, S.
    Hu, J. C.
    Aleksander, S. A.
    McIntosh, B. K.
    Renfro, D. P.
    Siegele, D. A.
    Attrill, H.
    Brown, N. H.
    Tweedie, S.
    Lomax, J.
    Osumi-Sutherland, D.
    Parkinson, H.
    Roncaglia, P.
    Lovering, R. C.
    Talmud, P. J.
    Humphries, S. E.
    Denny, P.
    Campbell, N. H.
    Foulger, R. E.
    Chibucos, M. C.
    Giglio, M. Gwinn
    Chang, H. Y.
    Finn, R.
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D1049 - D1056
  • [5] Annotation of functional variation in personal genomes using RegulomeDB
    Boyle, Alan P.
    Hong, Eurie L.
    Hariharan, Manoj
    Cheng, Yong
    Schaub, Marc A.
    Kasowski, Maya
    Karczewski, Konrad J.
    Park, Julie
    Hitz, Benjamin C.
    Weng, Shuai
    Cherry, J. Michael
    Snyder, Michael
    [J]. GENOME RESEARCH, 2012, 22 (09) : 1790 - 1797
  • [6] Identifying Mendelian disease genes with the Variant Effect Scoring Tool
    Carter, Hannah
    Douville, Christopher
    Stenson, Peter D.
    Cooper, David N.
    Karchin, Rachel
    [J]. BMC GENOMICS, 2013, 14
  • [7] A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3
    Cingolani, Pablo
    Platts, Adrian
    Wang, Le Lily
    Coon, Melissa
    Tung Nguyen
    Wang, Luan
    Land, Susan J.
    Lu, Xiangyi
    Ruden, Douglas M.
    [J]. FLY, 2012, 6 (02) : 80 - 92
  • [8] Cingolani Pablo, 2012, Frontiers in Genetics, V3, P35, DOI 10.3389/fgene.2012.00035
  • [9] CLARK MM, 2018, NPJ GENOM MED, V3
  • [10] Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data
    Cooper, Gregory M.
    Shendure, Jay
    [J]. NATURE REVIEWS GENETICS, 2011, 12 (09) : 628 - 640