Machine-Learning-Based Approach to Differential Diagnosis in Tuberculous and Viral Meningitis

被引:14
作者
Jeong, Young-Seob [1 ]
Jeon, Minjun [2 ]
Park, Joung Ha [3 ]
Kim, Min-Chul [3 ,4 ]
Lee, Eunyoung [5 ,6 ]
Park, Se Yoon [5 ]
Lee, Yu-Mi [7 ]
Choi, Sungim [8 ]
Park, Seong Yeon [8 ]
Park, Ki-Ho [7 ]
Kim, Sung-Han [3 ]
Jeon, Min Huok [9 ]
Choo, Eun Ju [10 ]
Kim, Tae Hyong [5 ]
Lee, Mi Suk [7 ]
Kim, Tark [10 ]
机构
[1] Soonchunhyang Univ, Big Data Engn Dept, Asan, South Korea
[2] PharmCADD, R&D Dept, Busan, South Korea
[3] Univ Ulsan, Asan Med Ctr, Dept Infect Dis, Coll Med, Seoul, South Korea
[4] Chung Ang Univ Hosp, Dept Internal Med, Div Infect Dis, Seoul, South Korea
[5] Soonchunhyang Univ, Dept Internal Med, Seoul Hosp, Seoul, South Korea
[6] Korea Inst Radiol & Med Sci, Dept Internal Med, Div Infect Dis, Seoul, South Korea
[7] Kyung Hee Univ, Kyung Hee Univ Hosp, Dept Internal Med, Sch Med, Seoul, South Korea
[8] Dongguk Univ, Div Infect Dis, Ilsan Hosp, Goyang, South Korea
[9] Soonchunhyang Univ, Dept Internal Med, Cheonan Hosp, Cheonan, South Korea
[10] Soonchunhyang Univ, Dept Internal Med, Bucheon Hosp, 170 Jomaru Ro, Bucheon 14584, Gyeonggi Do, South Korea
关键词
Tuberculosis; Virus; Meningitis; Machine learning; Diagnosis;
D O I
10.3947/ic.2020.0104
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Background: Tuberculous meningitis (TBM) is the most severe form of tuberculosis, but differentiating between the diagnosis of TBM and viral meningitis (VM) is difficult. Thus, we have developed machine-learning modules for differentiating TBM from VM. Material and Methods: For the training data, confirmed or probable TBM and confirmed VM cases were retrospectively collected from five teaching hospitals in Korea between January 2000 - July 2018. Various machine-learning algorithms were used for training. The machine-learning algorithms were tested by the leave-one-out cross-validation. Four residents and two infectious disease specialists were tested using the summarized medical information. Results: The training study comprised data from 60 patients with confirmed or probable TBM and 143 patients with confirmed VM. Older age, longer symptom duration before the visit, lower serum sodium, lower cerebrospinal fluid (CSF) glucose, higher CSF protein, and CSF adenosine deaminase were found in the TBM patients. Among the various machine-learning algorithms, the area under the curve (AUC) of the receiver operating characteristics of artificial neural network (ANN) with Imperative-Imputer for matrix completion (0.85; 95% confidence interval 0.79 - 0.89) was found to be the highest. The AUC of the ANN model was statistically higher than those of all the residents (range 0.67 - 0.72, P < 0.001) and an infectious disease specialist (AUC 0.76; P = 0.03). Conclusion: The machine-learning techniques may play a role in differentiating between TBM and VM. Specifically, the ANN model seems to have better diagnostic performance than the non-expert clinician.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 2018, ARXIV PREPR
[2]   Adenosine deaminase activity in cerebrospinal fluid and serum for the diagnosis of tuberculous meningitis [J].
Cho, Bang-Hoon ;
Kim, Byeong C. ;
Yoon, Geum-Jin ;
Choi, Seong-Min ;
Chang, Jane ;
Lee, Seung-Han ;
Park, Man-Seok ;
Shin, Jong Hee ;
Kim, Myeong-Kyu ;
Cho, Ki-Hyun .
CLINICAL NEUROLOGY AND NEUROSURGERY, 2013, 115 (09) :1831-1836
[3]   The microbiological diagnosis of tuberculous meningitis: results of Haydarpasa-1 study [J].
Erdem, H. ;
Ozturk-Engin, D. ;
Elaldi, N. ;
Gulsun, S. ;
Sengoz, G. ;
Crisan, A. ;
Johansen, I. S. ;
Inan, A. ;
Nechifor, M. ;
Al-Mahdawi, A. ;
Civljak, R. ;
Ozguler, M. ;
Savic, B. ;
Ceran, N. ;
Cacopardo, B. ;
Inal, A. S. ;
Namiduru, M. ;
Dayan, S. ;
Kayabas, U. ;
Parlak, E. ;
Khalifa, A. ;
Kursun, E. ;
Sipahi, O. R. ;
Yemisen, M. ;
Akbulut, A. ;
Bitirgen, M. ;
Dulovic, O. ;
Kandemir, B. ;
Luca, C. ;
Parlak, M. ;
Stahl, J. P. ;
Pehlivanoglu, F. ;
Simeon, S. ;
Ulu-Kilic, A. ;
Yasar, K. ;
Yilmaz, G. ;
Yilmaz, E. ;
Beovic, B. ;
Catroux, M. ;
Lakatos, B. ;
Sunbul, M. ;
Oncul, O. ;
Alabay, S. ;
Sahin-Horasan, E. ;
Kose, S. ;
Shehata, G. ;
Andre, K. ;
Alp, A. ;
Cosic, G. ;
Gul, H. Cem .
CLINICAL MICROBIOLOGY AND INFECTION, 2014, 20 (10) :O600-O608
[4]   Using machine learning techniques to develop forecasting algorithms for postoperative complications: protocol for a retrospective study [J].
Fritz, Bradley A. ;
Chen, Yixin ;
Murray-Torres, Teresa M. ;
Gregory, Stephen ;
Ben Abdallah, Arbi ;
Kronzer, Alex ;
McKinnon, Sherry Lynn ;
Budelier, Thaddeus ;
Helsten, Daniel L. ;
Wildes, Troy S. ;
Sharma, Anshuman ;
Avidan, Michael Simon .
BMJ OPEN, 2018, 8 (04)
[5]   Assessing model fit by cross-validation [J].
Hawkins, DM ;
Basak, SC ;
Mills, D .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (02) :579-586
[6]  
Hong SI, 2017, INFECT CHEMOTHER, V49, P123, DOI 10.3947/ic.2017.49.2.123
[7]   Clinical prediction rule for differentiating tuberculous from viral meningitis [J].
Hristea, A. ;
Olaru, I. D. ;
Baicus, C. ;
Moroti, R. ;
Arama, V. ;
Ion, M. .
INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2012, 16 (06) :793-798
[8]   A New Scoring System for the Differential Diagnosis between Tuberculous Meningitis and Viral Meningitis [J].
Lee, Sang-Ah ;
Kim, Shin-Woo ;
Chang, Hyun-Ha ;
Jung, Hyejin ;
Kim, Yoonjung ;
Hwang, Soyoon ;
Kim, Sujeong ;
Park, Han-Ki ;
Lee, Jong-Myung .
JOURNAL OF KOREAN MEDICAL SCIENCE, 2018, 33 (31)
[9]   Tuberculous meningitis: a uniform case definition for use in clinical research [J].
Marais, Suzaan ;
Thwaites, Guy ;
Schoeman, Johan F. ;
Toeroek, M. Estee ;
Misra, Usha K. ;
Prasad, Kameshwar ;
Donald, Peter R. ;
Wilkinson, Robert J. ;
Marais, Ben J. .
LANCET INFECTIOUS DISEASES, 2010, 10 (11) :803-812
[10]   Evaluation of GeneXpert MTB/RIF for Diagnosis of Tuberculous Meningitis [J].
Nguyen Thi Quynh Nhu ;
Heemskerk, Dorothee ;
Do Dang Anh Thu ;
Tran Thi Hong Chau ;
Nguyen Thi Hoang Mai ;
Ho Dang Trung Nghia ;
Pham Phu Loc ;
Dang Thi Minh Ha ;
Merson, Laura ;
Tran Thi Van Thinh ;
Day, Jeremy ;
Nguyen van Vinh Chau ;
Wolbers, Marcel ;
Farrar, Jeremy ;
Caws, Maxine .
JOURNAL OF CLINICAL MICROBIOLOGY, 2014, 52 (01) :226-233