A spectral characterization of isomorphisms on C☆-algebras

被引:0
作者
Brits, R. [1 ]
Schulz, F. [1 ]
Toure, C. [1 ]
机构
[1] Univ Johannesburg, Dept Math, Johannesburg, South Africa
关键词
Spectrum; C-star-algebra; Isomorphism; Banach algebra; PRESERVING MAPS; BANACH-ALGEBRAS;
D O I
10.1007/s00013-019-01350-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following a result of Hatori et al. (J Math Anal Appl 326:281-296, 2007), we give here a spectral characterization of an isomorphism from a C-algebra onto a Banach algebra. We then use this result to show that a C-algebra A is isomorphic to a Banach algebra B if and only if there exists a surjective function f : A. B satisfying (i) s (f(x) f(y) f(z)) = s (xyz) for all x, y, z. A (where s denotes the spectrum), and (ii) f is continuous at 1. In particular, if (in addition to (i) and (ii)) f(1) = 1, then f is an isomorphism. An example shows that (i) cannot be relaxed to products of two elements, as is the case with commutative Banach algebras. The results presented here also elaborate on a paper of Bre. sar and. Spenko (J Math Anal Appl 393: 144-150, 2012), and a paper of Bourhim et al. (Arch Math 107: 609-621, 2016).
引用
收藏
页码:391 / 398
页数:8
相关论文
共 8 条
[1]  
Aupetit Bernard, 1991, A Primer on Spectral Theory
[2]   Maps between Banach algebras preserving the spectrum [J].
Bourhim, A. ;
Mashreghi, J. ;
Stepanyan, A. .
ARCHIV DER MATHEMATIK, 2016, 107 (06) :609-621
[3]   UNIQUENESS AND SPECTRAL VARIATION IN BANACH ALGEBRAS [J].
Braatvedt, G. ;
Brits, R. .
QUAESTIONES MATHEMATICAE, 2013, 36 (02) :155-165
[4]   Determining elements in Banach algebras through spectral properties [J].
Bresar, Matej ;
Spenko, Spela .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) :144-150
[5]   Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative [J].
Hatori, Osamu ;
Miura, Takeshi ;
Takagi, Hiroyuki .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :281-296
[6]   Some characterizations of the automorphisms of B(H) and C(X) [J].
Molnár, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (01) :111-120
[7]   Multiplicatively spectrum-preserving maps of function algebras [J].
Rao, NV ;
Roy, AK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (04) :1135-1142
[8]   Multiplicatively spectrum-preserving maps of function algebras. II [J].
Rao, NV ;
Roy, AK .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2005, 48 :219-229