Multilevel methods for discontinuous Galerkin FEM on locally refined meshes

被引:40
作者
Kanschat, G [1 ]
机构
[1] Heidelberg Univ, Inst Angew Math, D-69120 Heidelberg, Germany
关键词
discontinuous Galerkin; finite elements; preconditioning; multigrid; adaptive methods; local refinement;
D O I
10.1016/j.compstruc.2004.04.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We review shortly the analytical results on multilevel preconditioning for DG methods for elliptic problems. An algorithm is presented which does not loose efficiency under local refinement. It uses subspace smoothing and does not require integration of additional matrices. This algorithm is applied to the interior penalty method and the local discontinuous Galerkin method. A feasible way of implementing the scheme is presented. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2437 / 2445
页数:9
相关论文
共 14 条
  • [1] Unified analysis of discontinuous Galerkin methods for elliptic problems
    Arnold, DN
    Brezzi, F
    Cockburn, B
    Marini, LD
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) : 1749 - 1779
  • [2] AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS
    ARNOLD, DN
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) : 742 - 760
  • [3] BANGERTH W, 1999, 43 SFB
  • [4] BANGERTH W, 1999, DEAL 2 DIFFERENTIAL
  • [5] Becker R, 2000, NUMER LINEAR ALGEBR, V7, P363, DOI 10.1002/1099-1506(200009)7:6<363::AID-NLA202>3.0.CO
  • [6] 2-V
  • [7] Bramble J. H., 1993, PITMAN RES NOTES MAT, V294
  • [8] Gopalakrishnan J, 2003, COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, P1943
  • [9] A multilevel discontinuous Galerkin method
    Gopalakrishnan, J
    Kanschat, G
    [J]. NUMERISCHE MATHEMATIK, 2003, 95 (03) : 527 - 551
  • [10] GOPALAKRISHNAN J, 2003, NUMERICAL MATH ADV A, P795