PHASE RETRIEVAL OF SPARSE SIGNALS USING OPTIMIZATION TRANSFER AND ADMM

被引:0
作者
Weller, Daniel S. [1 ]
Pnueli, Ayelet [2 ]
Radzyner, Ori [2 ]
Divon, Gilad [2 ]
Eldar, Yonina C. [2 ]
Fessler, Jeffrey A. [1 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
[2] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
来源
2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2014年
关键词
phase retrieval; sparse recovery; variable splitting; majorize-minimize; ADMM; LINEAR INVERSE PROBLEMS; X-RAY CRYSTALLOGRAPHY; THRESHOLDING ALGORITHM; IMAGE-RESTORATION; RECOVERY; CONSTRAINT; SURE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a reconstruction method for the phase retrieval problem prevalent in optics, crystallography, and other imaging applications. Our approach uses signal sparsity to provide robust reconstruction, even in the presence of outliers. Our method is multi-layered, involving multiple random initial conditions, convex majorization, variable splitting, and alternating directions method of multipliers (ADMM)-based implementation. Monte Carlo simulations demonstrate that our algorithm can correctly and robustly detect sparse signals from full and undersampled sets of squared-magnitude-only measurements, corrupted by additive noise or outliers.
引用
收藏
页码:1342 / 1346
页数:5
相关论文
共 34 条
[1]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[2]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[3]   Phase Retrieval via Matrix Completion [J].
Candes, Emmanuel J. ;
Eldar, Yonina C. ;
Strohmer, Thomas ;
Voroninski, Vladislav .
SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01) :199-225
[4]   PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming [J].
Candes, Emmanuel J. ;
Strohmer, Thomas ;
Voroninski, Vladislav .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (08) :1241-1274
[5]  
Chouzenoux E., 2013, BLOCK COORDINATE VAR
[6]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[7]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[8]   Phase retrieval: Stability and recovery guarantees [J].
Eldar, Yonina C. ;
Mendelson, Shahar .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 36 (03) :473-494
[9]   Phase retrieval algorithms: a personal tour [J].
Fienup, James R. .
APPLIED OPTICS, 2013, 52 (01) :45-56
[10]   PHASE RETRIEVAL ALGORITHMS - A COMPARISON [J].
FIENUP, JR .
APPLIED OPTICS, 1982, 21 (15) :2758-2769