A posteriori error estimation for a fully discrete discontinuous Galerkin approximation to a kind of singularly perturbed problems

被引:18
作者
Chen, Yanping [1 ]
Yang, Jiming [1 ]
机构
[1] Xiangtan Univ, Sch Math Computing Sci, Inst Computat & Appl Math, Hunan Key Lab Computat & Simulat & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
a posteriori error; full discretization; discontinuous galerkin method; singular perturbation; FINITE-ELEMENT METHODS; CONVERGENCE;
D O I
10.1016/j.finel.2007.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time variable in the semi-discrete problem is still continuous. In order to obtain an expected numerical solution, discretization the time variable from the semi-discrete form (full discretization) is needed. For a kind of non-stationarily singular perturbation problem in ID, a fully discrete discontinuous Galerkin (DG) method is considered. That is to say, space variable is discretized with a primal DG method with penalty, and time variable is done using the backward Euler method. By virtue of duality arguments, inverse estimation of finite element method and interpolation theory, we present a residual-type a posteriori error indicator, which is usually used for adaptivity. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:757 / 770
页数:14
相关论文
共 21 条
[1]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776
[2]  
[Chen Hua 陈华], 2004, [湘潭大学自然科学学报, Natural Science Journal of Xiangtan University], V26, P119
[3]   Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid [J].
Chen, YP .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 24 (1-4) :197-212
[4]   Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution [J].
Chen, YP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 159 (01) :25-34
[5]   A posteriori discontinuous Galerkin error estimates for transient convection-diffusion equations [J].
Ern, A ;
Proft, J .
APPLIED MATHEMATICS LETTERS, 2005, 18 (07) :833-841
[6]   Discontinuous hp-finite element methods for advection-diffusion-reaction problems [J].
Houston, P ;
Schwab, C ;
Süli, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :2133-2163
[7]   DISCONTINUOUS GALERKIN FINITE-ELEMENT METHODS FOR 2ND-ORDER HYPERBOLIC PROBLEMS [J].
JOHNSON, C .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 107 (1-2) :117-129
[8]  
Jung CY, 2005, INT J NUMER ANAL MOD, V2, P367
[9]  
LARSON M, 2000, DISCONTINUOUS GALERK
[10]   A discontinuous hp finite element method for diffusion problems [J].
Oden, JT ;
Babuska, I ;
Baumann, CE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (02) :491-519