Navier-Stokes equations with regularity in one direction

被引:146
作者
Kukavica, Igor [1 ]
Ziane, Mohammed [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2395919
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider sufficient conditions for the regularity of Leray-Hopf solutions of the Navier-Stokes equations. We prove that if the third derivative of the velocity partial derivative u/partial derivative x(3) belongs to the space (Lt0Lx0r)-L-s, where 2/s(0)+3/r(0)<= 2 and 9/4 <= r(0)<= 3, then the solution is regular. This extends a result of Beirao da Veiga [Chin. Ann. Math., Ser. B 16, 407-412 (1995); C. R. Acad. Sci, Ser. I: Math. 321, 405-408 (1995)] by making a requirement only on one direction of the velocity instead of on the full gradient. The derivative partial derivative u/partial derivative x(3) can be substituted with any directional derivative of u. (c) 2007 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 2002, METHODS APPL ANAL, DOI DOI 10.4310/MAA.2002.V9.N4.A5
[2]  
[Anonymous], 2003, USP MAT NAUK
[3]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[4]  
Chae D., 1999, ELECTRON J DIFFER EQ, V5, P1
[5]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[6]  
DAVEIGA HB, 1995, CR ACAD SCI I-MATH, V321, P405
[7]  
He C., 2002, ELECTRON J DIFFER EQ, V29, P1
[8]   One component regularity for the Navier-Stokes equations [J].
Kukavica, I ;
Ziane, M .
NONLINEARITY, 2006, 19 (02) :453-469
[9]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[10]   Uniqueness of mild solutions of the Navier-Stokes system in LN [J].
Lions, PL ;
Masmoudi, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) :2211-2226