Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer

被引:73
作者
Dunk, Paul W. [1 ,2 ]
Mulet-Gas, Marc [3 ]
Nakanishi, Yusuke [4 ,5 ]
Kaiser, Nathan K. [2 ]
Rodriguez-Fortea, Antonio [3 ]
Shinohara, Hisanori [4 ,5 ]
Poblet, Josep M. [3 ]
Marshall, Alan G. [1 ,2 ]
Kroto, Harold W. [1 ]
机构
[1] Florida State Univ, Dept Chem & Biochem, 95 Chieftain Way, Tallahassee, FL 32306 USA
[2] Florida State Univ, Ion Cyclotron Resonance Program, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[3] Univ Rovira & Virgili, Dept Quim Fis & Inorgan, E-43007 Tarragona, Spain
[4] Nagoya Univ, Dept Chem, Nagoya, Aichi 4648602, Japan
[5] Nagoya Univ, Inst Adv Res, Nagoya, Aichi 4648602, Japan
关键词
CRYSTALLOGRAPHIC CHARACTERIZATION; FULLERENE FORMATION; MASS-SPECTROMETRY; C-60; FORM; SC; TRANSFORMATION; STABILIZATION; SEPARATION; STABILITY;
D O I
10.1038/ncomms6844
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An understanding of chemical formation mechanisms is essential to achieve effective yields and targeted products. One of the most challenging endeavors is synthesis of molecular nanocarbon. Endohedral metallofullerenes are of particular interest because of their unique properties that offer promise in a variety of applications. Nevertheless, the mechanism of formation from metal-doped graphite has largely eluded experimental study, because harsh synthetic methods are required to obtain them. Here we report bottom-up formation of mono-metallofullerenes under core synthesis conditions. Charge transfer is a principal factor that guides formation, discovered by study of metallofullerene formation with virtually all available elements of the periodic table. These results could enable production strategies that overcome long-standing problems that hinder current and future applications of metallofullerenes.
引用
收藏
页数:8
相关论文
共 57 条
[1]   Isolation and characterization of two Pr@C82 isomers [J].
Akasaka, T ;
Okubo, S ;
Kondo, M ;
Maeda, Y ;
Wakahara, T ;
Kato, T ;
Suzuki, T ;
Yamamoto, K ;
Kobayashi, K ;
Nagase, S .
CHEMICAL PHYSICS LETTERS, 2000, 319 (1-2) :153-156
[2]   Non-HPLC Rapid Separation of Metallofullerenes and Empty Cages with TiCl4 Lewis Acid [J].
Akiyama, Kazuhiko ;
Hamano, Tatsuyuki ;
Nakanishi, Yusuke ;
Takeuchi, Erina ;
Noda, Shoko ;
Wang, Zhiyong ;
Kubuki, Shiro ;
Shinohara, Hisanori .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (23) :9762-9767
[3]  
[Anonymous], ADF2011 SCM THEOR CH
[4]  
Aoyagi S, 2010, NAT CHEM, V2, P678, DOI [10.1038/NCHEM.698, 10.1038/nchem.698]
[5]   Tb3N@C84:: An improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule [J].
Beavers, Christine M. ;
Zuo, Tianming ;
Duchamp, James C. ;
Harich, Kim ;
Dorn, Harry C. ;
Olmstead, Marilyn M. ;
Balch, Alan L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (35) :11352-11353
[6]   Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments [J].
Blakney, Greg T. ;
Hendrickson, Christopher L. ;
Marshall, Alan G. .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2011, 306 (2-3) :246-252
[7]   FULLERENES WITH METALS INSIDE [J].
CHAI, Y ;
GUO, T ;
JIN, CM ;
HAUFLER, RE ;
CHIBANTE, LPF ;
FURE, J ;
WANG, LH ;
ALFORD, JM ;
SMALLEY, RE .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (20) :7564-7568
[8]   Gd3N@C2n (n=40, 42, and 44):: Remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88 [J].
Chaur, Manuel N. ;
Melin, Frederic ;
Elliott, Bevan ;
Athans, Andreas J. ;
Walker, Kenneth ;
Holloway, Brian C. ;
Echegoyen, Luis .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (47) :14826-14829
[9]  
Chuvilin A, 2010, NAT CHEM, V2, P450, DOI [10.1038/NCHEM.644, 10.1038/nchem.644]
[10]   Isolation and properties of small-bandgap fullerenes [J].
Diener, MD ;
Alford, JM .
NATURE, 1998, 393 (6686) :668-671