Construction and electrochemical mechanism investigation of hierarchical core-shell like composite as high performance anode for potassium ion batteries

被引:28
作者
Hussain, Nadeem [1 ,2 ,4 ]
Zeng, Suyuan [3 ]
Feng, Zhenyu [1 ,2 ]
Zhai, Yanjun [3 ]
Wang, Chunsheng [1 ,2 ]
Zhao, Mingwen [5 ]
Qian, Yitai [1 ,2 ]
Xu, Liqiang [1 ,2 ,3 ]
机构
[1] Shandong Univ, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Peoples R China
[2] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
[3] Liaocheng Univ, Shandong Prov Key Lab, Collaborat Innovat Ctr Chem Energy Storage & Nove, Liaocheng 252059, Shandong, Peoples R China
[4] Shenzhen Univ, Inst Microscale Optoelect, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Minist Educ, Shenzhen 518060, Peoples R China
[5] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
关键词
core-shell; pseudocapacitance; in-situ X-ray diffraction (XRD); first principle calculations; potassium-ion batteries; RATE CAPABILITY; SODIUM-ION; CARBON; LITHIUM; EFFICIENT; ELECTRODE;
D O I
10.1007/s12274-021-3657-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Potassium-ion batteries (PIBs) are promising candidates for next-generation energy storage devices due to the earth abundance of potassium, low cost, and stable redox potentials. However, the lack of promising high-performance electrode materials for the intercalation/deintercalation of large potassium ions is a major challenge up to date. Herein, we report a novel uniform nickel selenide nanoparticles encapsulated in nitrogen-doped carbon (defined as "NiSe@NC") as an anode for PIBs, which exhibits superior rate performance and cyclic stability. Benefiting from the unique hierarchical core-shell like nanostructure, the intrinsic properties of metal-selenium bonds, synergetic effect of different components, and a remarkable pseudocapacitance effect, the anode exhibits a very high reversible capacity of 438 mA center dot h center dot g(-1) at 50 mA center dot g(-1), an excellent rate capability, and remarkable cycling performance over 2,000 cycles. The electrochemical mechanism were investigated by the in-situ X-ray diffraction, ex-situ high-resolution transmission electron microscopy, selected area electron diffraction, and first principle calculations. In addition, NiSe@NC anode also shows high reversible capacity of 512 mA center dot h center dot g(-1) at 100 mA center dot g(-1) with 84% initial Coulombic efficiency, remarkable rate performance, and excellent cycling life for sodium ion batteries. We believe the proposed simple approach will pave a new way to synthesize suitable anode materials for secondary ion batteries.
引用
收藏
页码:3552 / 3561
页数:10
相关论文
共 44 条
[1]   Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells [J].
Abouimrane, Ali ;
Weng, Wei ;
Eltayeb, Hussameldin ;
Cui, Yanjie ;
Niklas, Jens ;
Poluektov, Oleg ;
Amine, Khalil .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9632-9638
[2]   A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs [J].
An, Yongling ;
Fei, Huifang ;
Zhang, Zhen ;
Ci, Lijie ;
Xiong, Shenglin ;
Feng, Jinkui .
CHEMICAL COMMUNICATIONS, 2017, 53 (59) :8360-8363
[3]   Ti3+ Self-Doped Dark Rutile TiO2 Ultrafine Nanorods with Durable High-Rate Capability for Lithium-Ion Batteries [J].
Chen, Jun ;
Song, Weixin ;
Hou, Hongshuai ;
Zhang, Yan ;
Jing, Mingjun ;
Jia, Xinnan ;
Ji, Xiaobo .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (43) :6793-6801
[4]   Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries [J].
Chen, Mingzhe ;
Wang, Enhui ;
Liu, Qiannan ;
Guo, Xiaodong ;
Chen, Weihua ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
ENERGY STORAGE MATERIALS, 2019, 19 :163-178
[5]   Double-Shelled Ni-Fe-P/N-Doped Carbon Nanobox Derived from a Prussian Blue Analogue as an Electrode Material for K-Ion Batteries and Li-S Batteries [J].
Chen, Xiaoxia ;
Zeng, Suyuan ;
Muheiyati, Haliya ;
Zhai, YanJun ;
Li, Chuanchuan ;
Ding, Xuyang ;
Wang, Lu ;
Wang, Debao ;
Xu, Liqiang ;
He, Yanyan ;
Qian, Yitai .
ACS ENERGY LETTERS, 2019, 4 (07) :1496-1504
[6]   A novel graphene-wrapped corals-like NiSe2 for ultrahigh-capacity potassium ion storage [J].
Chu, Jianhua ;
Yu, Qiyao ;
Han, Kun ;
Xing, Lidong ;
Bao, Yanping ;
Wang, Wei .
CARBON, 2020, 161 :834-841
[7]   Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium [J].
Ding, Jia ;
Hu, Wenbin ;
Paek, Eunsu ;
Mitlin, David .
CHEMICAL REVIEWS, 2018, 118 (14) :6457-6498
[8]   Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes [J].
Ding, Jia ;
Wang, Huanlei ;
Li, Zhi ;
Kohandehghan, Alireza ;
Cui, Kai ;
Xu, Zhanwei ;
Zahiri, Beniamin ;
Tan, Xuehai ;
Lotfabad, Elmira Memarzadeh ;
Olsen, Brian C. ;
Mitlin, David .
ACS NANO, 2013, 7 (12) :11004-11015
[9]   Willow-Leaf-Like ZnSe@N-Doped Carbon Nanoarchitecture as a Stable and High-Performance Anode Material for Sodium-Ion and Potassium-Ion Batteries [J].
Dong, Caifu ;
Wu, Leqiang ;
He, Yanyan ;
Zhou, Yanli ;
Sun, Xiuping ;
Du, Wei ;
Sun, Xueqin ;
Xu, Liqiang ;
Jiang, Fuyi .
SMALL, 2020, 16 (47)
[10]   Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries [J].
Dong, Caifu ;
Guo, Lijun ;
Li, Haibo ;
Zhang, Bo ;
Gao, Xue ;
Tian, Fang ;
Qian, Yitai ;
Wang, Debao ;
Xu, Liqiang .
ENERGY STORAGE MATERIALS, 2020, 25 :679-686