The Tasaki-Crooks quantum fluctuation theorem

被引:121
作者
Talkner, Peter [1 ]
Hanggi, Peter [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
关键词
D O I
10.1088/1751-8113/40/26/F08
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting out from the recently established quantum correlation function expression of the characteristic function for the work performed by a force protocol on the system in Talkner et al (2007 Phys. Rev. E 75 050102 (Preprint cond- mat/0703213)) the quantum version of the Crooks fluctuation theorem is shown to emerge almost immediately by the mere application of an inverse Fourier transformation.
引用
收藏
页码:F569 / F571
页数:3
相关论文
共 12 条
[1]   The nonequilibrium thermodynamics of small systems [J].
Bustamante, C ;
Liphardt, J ;
Ritort, F .
PHYSICS TODAY, 2005, 58 (07) :43-48
[2]   Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences [J].
Crooks, GE .
PHYSICAL REVIEW E, 1999, 60 (03) :2721-2726
[3]   PROBABILITY OF 2ND LAW VIOLATIONS IN SHEARING STEADY-STATES [J].
EVANS, DJ ;
COHEN, EGD ;
MORRISS, GP .
PHYSICAL REVIEW LETTERS, 1993, 71 (15) :2401-2404
[4]   DYNAMICAL ENSEMBLES IN NONEQUILIBRIUM STATISTICAL-MECHANICS [J].
GALLAVOTTI, G ;
COHEN, EGD .
PHYSICAL REVIEW LETTERS, 1995, 74 (14) :2694-2697
[5]  
Haag R., 1967, Commun. Math. Phys, V5, P215, DOI [DOI 10.1007/BF01646342, 10.1007/BF01646342]
[6]   Nonequilibrium equality for free energy differences [J].
Jarzynski, C .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2690-2693
[7]   Fluctuation theorem for stochastic dynamics [J].
Kurchan, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16) :3719-3729
[8]   Quantum extension of the Jarzynski relation: Analogy with stochastic dephasing [J].
Mukamel, S .
PHYSICAL REVIEW LETTERS, 2003, 90 (17) :4
[9]   Fluctuation theorem for birth-death or chemical master equations with time-dependent rates [J].
Seifert, U .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (42) :L517-L521
[10]   KINETIC-EQUATIONS FROM HAMILTONIAN-DYNAMICS - MARKOVIAN LIMITS [J].
SPOHN, H .
REVIEWS OF MODERN PHYSICS, 1980, 52 (03) :569-615