共 50 条
Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs
被引:39
|作者:
Jeon, Su-Jin
[1
]
Yun, Jong-Pil
[2
]
Yeom, Han-Gyeol
[3
]
Shin, Woo-Sang
[2
,4
]
Lee, Jong-Hyun
[2
,4
]
Jeong, Seung-Hyun
[2
]
Seo, Min-Seock
[1
]
机构:
[1] Wonkwang Univ, Dept Conservat Dent, Daejeon Dent Hosp, Daejeon, South Korea
[2] Korea Inst Ind Technol KITECH, Safety Syst Res Grp, Gyongsan, South Korea
[3] Wonkwang Univ, Dept Oral & Maxillofacial Radiol, Daejeon Dent Hosp, Daejeon, South Korea
[4] Kyungpook Natl Univ, Coll IT Engn, Sch Elect Engn, Daegu, South Korea
关键词:
Deep learning;
Convolutional neural network;
C-shaped canal;
Diagnostic imaging;
Panoramic radiograph;
PART I;
2ND-MOLARS;
POPULATION;
SYSTEMS;
D O I:
10.1259/dmfr.20200513
中图分类号:
R78 [口腔科学];
学科分类号:
1003 ;
摘要:
Objective: The aim of this study was to evaluate the use of a convolutional neural network (CNN) system for predicting C-shaped canals in mandibular second molars on panoramic radiographs. Methods: Panoramic and cone beam CT (CBCT) images obtained from June 2018 to May 2020 were screened and 1020 patients were selected. Our dataset of 2040 sound mandibular second molars comprised 887 C-shaped canals and 1153 non-C-shaped canals. To confirm the presence of a C-shaped canal, CBCT images were analyzed by a radiologist and set as the gold standard. A CNN-based deep-learning model for predicting C-shaped canals was built using Xception. The training and test sets were set to 80 to 20%, respectively. Diagnostic performance was evaluated using accuracy, sensitivity, specificity, and precision. Receiver-operating characteristics (ROC) curves were drawn, and the area under the curve (AUC) values were calculated. Further, gradient-weighted class activation maps (Grad-CAM) were generated to localize the anatomy that contributed to the predictions. Results: The accuracy, sensitivity, specificity, and precision of the CNN model were 95.1, 92.7, 97.0, and 95.9%, respectively. Grad-CAM analysis showed that the CNN model mainly identified root canal shapes converging into the apex to predict the C-shaped canals, while the root furcation was predominantly used for predicting the non-C-shaped canals. Conclusions: The deep-learning system had significant accuracy in predicting C-shaped canals of mandibular second molars on panoramic radiographs.
引用
收藏
页数:6
相关论文